欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1080-1087.doi: 10.3724/SP.J.1006.2012.01080

• 耕作栽培·生理生化 • 上一篇    下一篇

不同株高夏玉米品种同化物积累转运与分配特性

李利利1,张吉旺1,*,董树亭1,刘鹏1,赵斌1,2,杨今胜2   

  1. 1作物生物学国家重点实验室 / 山东农业大学农学院,山东泰安 271018;2山东省玉米育种与栽培技术重点实验室,山东莱州 261448
  • 收稿日期:2011-10-17 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-03-29
  • 通讯作者: 张吉旺, E-mail: jwzhang@sdau.edu.cn, Tel: 0538-8245838
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118602), 山东省现代玉米产业技术体系项目,国家公益性行业(农业)科研专项(201103003)和国家粮食丰产科技工程项目(2011BAD16B09)资助。

Characteristics of Accumulation, Transition and Distribution of Assimilate in Summer Maize Varieties with Different Plant Height

LI Li-Li1,ZHANG Ji-Wang1,*,DONG Shu-Ting1,LIU Peng1,ZHAO Bin1,2,YANG Jin-Sheng2   

  1. 1 State Key Laboratory of Crop Biology/Agronomy College of Shandong Agricultural University, Tai’an 271018, China; 2 Shandong Key Laboratory of Maize Breeding and Cultivation Techniques, Laizhou 261448, China
  • Received:2011-10-17 Revised:2012-02-22 Published:2012-06-12 Published online:2012-03-29
  • Contact: 张吉旺, E-mail: jwzhang@sdau.edu.cn, Tel: 0538-8245838

摘要: 以矮秆玉米品种登海661 (DH661),中间型玉米品种超试3号(CS3),高秆玉米品种鲁单981 (LD981)和先玉335 (XY335)为试验材料,研究不同株高夏玉米品种同化物积累、转运及分配特性。结果表明,不同株高类型玉米品种干物质积累量在开花期之前差异不显著,其差异主要表现在开花后,随株高的增加,开花后的干物质积累降低。矮秆品种植株中下部茎秆的碳素分配率比高秆品种低,叶片则相反。通过13C同位素示踪研究表明,不同株高类型玉米品种不同部位叶片对产量的贡献不同。随株高降低,中、下部叶片的光合产物转移率相对提高,而上部叶片的转移率有所下降,高秆品种LD981和XY335上部叶片对籽粒的贡献率相对较高,中矮秆品种DH661和CS3下部叶片对籽粒的贡献率相对较高。不同部位叶片在开花前后对籽粒贡献也不相同,高秆品种LD981和XY335上部叶片开花后光合产物的转移率最高;矮秆品种DH661中部叶片开花前光合产物的转移率最高。

关键词: 夏玉米, 株高, 碳素转运及分配, 同位素13C

Abstract: Three types of summer maize varieties, low-plant height cultivar Denghai 661 (DH661), medium-plant height cultivar Chaoshi 3 (CS3), high-plant height varieties Ludan 981 (LD981) and Xianyu 335 (XY335) were need in this study. The results showed that the difference of dry matter accumulation for different varieties was mainly manifested after flowering stage. Along with the increase of the plant height, dry matter accumulation after flowering stage reduced. The carbon distribution rate in lower part of stem in low-plant height cultivar was lower than that in the high-plant height varieties. The experiment using tracer of isotope 13C showed that the leaves in different parts of plant in different varieties had different contributions to grain yield. With the decrease of the plant height, the dry matter transition of middle and bottom leaves was increased, and that of top leaves was decreased. The relative contribution of upper leaves in high-plant height varieties to grains was higher than that in low-plant height cultivar that of lower leaves in high-plant height varieties was lower. There were differences in the contribution to grain yield of different parts of leaves before or after flowering. For the dry matter transition, the top leaves of LD981 and XY335, as well as the middle leaves of DH661 were the highest.

Key words: Summer maize, Plant height, Carbon assimilation transition and distribution, Isotope 13C

[1]Dai J-R(戴景瑞). The review and prospects of maize genetics and breeding. In: Prospects of Maize Genetics an Breeding for the 21th Century-Paper Collection of International Maize Genetics an Breeding Symposium (玉米遗传育种国际学术讨论会文集). Changchun: China Agricultural Science and Technology Press, 2000. pp 1-7 (in Chinese)

[2]Dai J-R(戴景瑞), E L-Z(鄂立柱). Scientific and technological innovation of maize breeding in china. J Maize Sci (玉米科学), 2010, 18(1):1-5(in Chinese with English abstract)

[3]Zhang Z-M(张泽民), Gao S-Y(高书颖), Li X-Y(李雪英), Wang B(王彪). Preliminary study on improved trend of plant-type characters in maize. J Luoyang Agric Coll (洛阳农专学报), 1996, 16(1): 5-8 (in Chinese)

[4]Tan H-P(谭禾平), Wang G-Y(王桂跃), Hu X-N(胡贤女), Xu Q-X(许巧贤). Multiple regression and path analysis of effective factors affecting maize yield. Acta Agric Zhejianggesis (浙江农业学报), 2006, 18(4): 238-240 (in Chinese with English abstract)

[5]Pereira M G, Lee M. Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet, 1995, 90: 380-388

[6]Zhang Z-M(张泽民), Jia C-Z(贾长柱). Effects of plant-type on genetic gain in maize. Hereditas (Beijing) (遗传), 1997, 19(2): 31-34 (in Chinese)

[7]Chapman S C, Edmeades G O. Selection improves drought tolerance in tropical maize populations: II. Direct and correlated responses among secondary traits. Crop Sci, 1999, 39: 1315-1324

[8]Yang L-H(杨利华), Zhang L-H(张丽华), Yang S-L(杨世丽), Ma R-K(马瑞昆), Zhang Q-G(张全国). Responses of some population quality indices of corn hybrids differing in plant height to planting density. Acta Agric Boreali-Sin (华北农学报), 2007, 22(6): 139-146 (in Chinese with English abstract)

[9]Yang J-S(杨今胜), Wang Y-J(王永军), Zhang J-W(张吉旺), Liu P(刘鹏), Li C-F(李从锋), Zhu Y-G(朱元刚), Hao M-B(郝梦波), Liu J-G(柳京国), Li D-H(李登海), Dong S-T(董树亭). Dry matter production and photosynthesis characteristics of different hybrids maize (Zea mays L.) with super-high-yielding potential. Acta Agron Sin (作物学报), 2010, 37(2): 355-361 (in Chinese with English abstract)

[10]Tollenaar M, Daynard T B. Effect of source-sink ration on dry matter accumulation and leaf senesce of maize. Can J Plant Sci, 1982, 62: 855-860

[11]Yang G-P(陈国平), Yang G-H(杨国航), Zhao M(赵明), Wang L-C(王立春), Wang Y-D(王友德), Xue J-Q(薛吉全), Gao J-L(高聚林), Li D-H(李登海), Dong S-T(董树亭), Li C-H(李潮海), Song H-X(宋慧欣), Zhao J-R(赵久然). Studies on maize small area super-high yield trails and cultivation technique. J Maize Sci (玉米科学), 2008, 16(4): 1-4 (in Chinese with English abstract)

[12]Huang Z-X(黄振喜), Wang Y-J(王永军), Wang K-J(王空军), Li D-H(李登海), Zhao M(赵明), Liu J-G(柳京国), Dong S-T(董树亭), Wang H-J(王洪军), Wang J-H(王军海), Yang J-S(杨今胜). Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15000 kg ha-1. Sci Agric Sin (中国农业科学), 2007, 40(9): 1898-1906 (in Chinese with English abstract)

[13]Liu K-L(刘克礼), Liu J-H(刘景辉). Study on law biomass accumulation, distribution and transference of spring corn. J Inner Mongolia Agric Univ (内蒙古农牧学院学报), 1994, 15(1): 1-9 (in Chinese)

[14]Ma G-S(马国胜), Xue J-Q(薛吉全), Lu H-D(路海东). Laws of dry matter accumulation and transfer in different types of silage maize. J Maize Sci (玉米科学), 2005, 13(4): 66-69 (in Chinese with English abstract)

[15]Wang J-J(王进军), Ke F-L(柯福来), Bai O(白鸥), Huang R-D(黄瑞冬). Effects of different nitrogen way for corn dry matter accumulation. Acta Shenyang Agric Univ (沈阳农业大学学报), 2008, 39(4): 392-395 (in Chinese)

[16]Han J-L(韩金玲), Li Y-S(李彦生), Yang Q(杨晴), Zhou Y-F(周印富), Wang W-P(王文颇), Li J-S(李婧实), Zhang G-Q(张国庆). The effect of plant density on regularity of accumulation, distribution and transfer of dry matter on spring maize. J Maize Sci (玉米科学), 2008, 16(5): 115-119 (in Chinese with English abstract)

[17]Huang Z-H(黄智鸿), Shen L(申林), Sun G(孙刚), Cao Y(曹洋), Bao Y(包岩), Liang X-H(梁煊赫), Wu C-S(吴春胜), Sun F-N(孙丰年). Study on leaf area and dry matter accumulation and distribution in super high-yield maize. J Anhui Agicl Sci (安徽农业科学), 2007, 35(8): 2227-2228 (in Chinese with English abstract)

[18]Karlendl D L, Sadler E J, Camp C R. Dry matter nitrogen, phosphorus and potassium accumulation rate by corn on Norfolk loamy Sand. Agron J, 1987, 79: 649-656

[19]Ma Y-h(马赟花), Xue J-Q(薛吉全), Zhang R-H(张仁和), Lin C(林春), Hao Y(郝扬), Sun J(孙娟). Relationship between dry matter accumulation and distribution to yield of different maize cultivars. Guangdong Agric Sci (广东农业科学), 2010, (3): 36-40 (in Chinese with English abstract)

[20]Huang Z-H(黄智鸿), Wang S-Y(王思远), Bao Y(包岩), Liang X-H(梁煊赫), Sun G(孙刚), Shen L(申林), Cao Y(曹洋), Wu C-S(吴春胜). Studies on dry matter accumulation and distributive characteristic in super high- yield maize. J Maize Sci (玉米科学), 2007, 15(3): 95-98 (in Chinese with English abstract)

[21]Feng L(冯蕾), Tong C-L(童成立), Shi H(石辉), Wu J-S(王金水), Chen A-L(陈安磊), Zhou P(周萍). Effects of different nitrogen, phosphorous, and potassium fertilization modes on carbon and nitrogen accumulation and allocation in rice plant. Chin J Appl Ecol (应用生态学报), 2011, 22(10): 2615-2621 (in Chinese with English abstract)

[22]Feng L(冯蕾), Tong C-L(童成立), Shi H(石辉), Wu J-S(王金水), Li Y(李勇), Huang T-P(黄铁平), Xia H-A(夏海鳌). Effect of fertilization on the absorption, partition and accumulation of carbon and nitrogen of rice under the equal N conditions. Environ Sci (环境科学), 2011, 32(2): 574-580 (in Chinese with English abstract)

[23]Zhu Y-L(朱咏莉), Wu J-S(吴金水), Tong C-L(童成立), Wang K-Q(王克林), Wang Q-X(王勤学). Response of CO2 fluxes to light intensity and temperature in rice paddy field. Environ Sci (环境科学), 2008, 29(4): 1040-1044 (in Chinese with English abstract)

[24]Zong H-Y(宗海英), Wang K-R(王凯荣), Xie X-L(谢小立). Effect of long-term fertilization on soil organic nitrogen components in paddy soil derived from red earth. Chin J Appl Ecol (应用生态学报), 2008, 19(8): 1721-1726 (in Chinese with English abstract)

[25]Wang Y-F(王月福), Yu Z-W(于振文), Li S-X(李尚霞), Yu S-L(余松烈). Effect of nitrogen nutrition on carbon assimilation and transfer and yield after wheat anthesis. J Triticeae Crops (麦类作物学报), 2002, 22(2): 55-59 (in Chinese with English abstract)

[26]Liu Q(刘强), Luo Z-M(罗泽民), Rong X-M(荣湘民), Peng J-W(彭建伟). Comparisons of carbon metabolism characteristics among several rice cultivars. Chin J Rice Sci (中国水稻科学), 1998, 12(suppl): 29-33 (in Chinese with English abstract)

[27]Xu Q-Z(徐庆章), Wang Q-C(王庆成), Niu Y-Z(牛玉贞), Wang Z-X(王忠孝), Zhang J(张军). Research on the relationship between plant type and group photosynthesis in maize. Acta Agron Sin (作物学报), 1995, 21(4): 492-496 (in Chinese)

[28]Qiao H-W(乔宏伟), Wu Y-L(武月莲), Wang Z-H(王志红), Hou H(侯辉). Study on leaves physiological characteristic of different maize population at filling stage. J Inner Mongolia Univ Natl (Nat Sci) (内蒙古民族大学学报?自然科学版), 2008, 23(6): 637-639 (in Chinese with English abstract)

[29]Tan F-W(谭凤梧). Research on growth rule and function of maize leaf. J Shenyang Univ (沈阳农业大学学报), 1989, 20(1): 30-34 (in Chinese)

[30]Song F-B(宋凤斌), Tong S-Y(童淑媛). Characteristics of dry matter accumulation, distribution and translocation in maize with different plant types. Jiangsu J Agric Sci (江苏农业学报), 2010, 26(4): 700-705 (in Chinese with English abstract)

[31]Yu Z-W(于振文), Zhao M(赵明), Wang B-L(王伯伦). Crop Cultivation Science [作物栽培学各论(北方本)]. Beijing: China Agriculture Press, 2003. pp 100-101 (in Chinese)

[32]Liu W(刘伟), Lü P(吕鹏), Su K(苏凯), Yang J-S(杨今胜), Zhang J-W(张吉旺), Dong S-T(董树亭), Liu P(刘鹏), Sun Q-Q(孙庆泉). Effects of planting density on the grain yield and source-sink characteristics of summer maize. Chin J Appl Ecol (应用生态学报), 2010, 21(7): 1737-1743 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[7] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[8] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[9] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[10] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[11] 付虹雨, 崔国贤, 李绪孟, 佘玮, 崔丹丹, 赵亮, 苏小惠, 王继龙, 曹晓兰, 刘婕仪, 刘皖慧, 王昕惠. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455.
[12] 姜朋,何漪,张旭,吴磊,张平平,马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析[J]. 作物学报, 2020, 46(6): 858-868.
[13] 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块[J]. 作物学报, 2020, 46(3): 385-394.
[14] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[15] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!