作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1416-1424.doi: 10.3724/SP.J.1006.2012.01416
侯雷1,2,袁守江3,尹亮3,赵金凤2,万国峰1,张文会1,*,李学勇2,*
HOU Lei1,2,YUAN Shou-Jiang3,YIN Liang3,ZHAO Jin-Feng2,WAN Guo-Feng1,ZHANG Wen-Hui1,*,LI Xue-Yong2,*
摘要: 通过EMS诱变日本晴获得了s2-9和s1-146a两个矮秆突变体,其植株矮小,成熟期株高分别为日本晴的26.3%和19.2%;苗期叶片较宽,叶色深绿;穗型仍为散穗但穗长变短,粒型未发生改变。对水稻胚乳的α-淀粉酶诱导实验表明,这两个矮秆突变体与GA的信号传导途径无关,外源活性GA3对水稻幼苗株高的促进实验显示它们应与赤霉素的生物合成有关。利用突变体与籼稻品种Dular分别杂交构建了F2群体,精细定位表明这2个突变体的表型与水稻Dwarf18 (D18)基因紧密连锁。序列分析发现这两个矮秆突变体的D18基因均发生了突变:在s2-9突变体中D18基因的内含子3' 拼接点发生单碱基突变,s1-146a中D18基因编码区的单碱基突变导致提前终止密码子的出现。RT-PCR结果显示,在s1-146a中D18基因表达明显增强,但在s2-9中未检测到D18基因的表达。
[1]Davies P J. Plant Hormones: Physiology, Biochemistry and Molecular Biology. Netherlands: Kluwer Academic Publishers, 1995. pp 13–38[2]Bleecker A B, Schuette J L, Kende H. Anatomical analysis of growth and developmental patterns in the internode of deepwater rice. Planta, 1986, 169: 490–497[3]Cosgrove D J. Plant cell enlargement and the action of expansins. Bioessays, 1996, 18: 533–540[4]Cho H T, Kende H. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell, 1997, 9: 1661–1667[5]Potter L, Fry S C. Xyloglucan endotransglycosylase activity in pea internodes. Plant Physiol, 1993, 103: 235–241[6]Uozu S, Tanaka_U M, Kitano H, Hattori K, Matsuoka M. Characterization of XET_related genes of rice. Plant Physiol, 2000, 122: 853–859[7]Sauter M, Seagull R W, Kende H. Internodal elongation and orientation of cellulose microfibrils and microtubules in deep water rice. Planta, 1993, 190: 354–362[8]Kinoshita T, Shinbashi N. Identification of dwarf genes and their character expression in the isogenic background. Jpn J Breed, 1982, 32: 219–231[9]Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell, 1995, 7: 1307–1317[10]Chiang H H, Hwang I, Goodman H M. Isolation of the Arabidopsis GA4 locus. Plant Cell, 1995, 7: 195–201[11]Martin D N, Proebsting W M, Hedden P. The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiol, 1999, 121: 775–781[12]Thomas S G, Phillips A L, Hedden P. Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA, 1999, 96: 4698–4703[13]Fujioka S, Yamane H, Spray C R, GAkin P, MacMillan J, Phinney B O, Takahashi, N. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol, 1988, 88: 1367–1372[14]Martin D N, Proebsting W M, Hedden P. Mendel’s dwarfing gene: cDNAs from the Lealleles and function of the expressed proteins. Proc Natl Acad Sci USA, 1997, 94: 8907–8911[15]Lester D R, Ross J J, Davies P J, Reid J B. Mendel’s stem length gene (Le) encodes a gibberellin 3 β-hydroxylase. Plant Cell, 1997, 9: 1435–1443[16]Tomoaki S, Koutarou M, Hironori I, Tomoko T, Miyako U T, Kanako I, Masatomo K, Ganesh K A, Shin T, Kiyomi A, Akio M, Hirohiko H, Hidemi K Motoyuki A, Makoto M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134: 1642–1653[17]Kobayashi M, Sakurai A, Saka H, Takahashi N. Quantitative analysis of endogenous gibberellins in normal and dwarf cultivars of rice. Plant Cell Physiol, 1989, 30: 963–969[18]Kobayashi M, GAkin P, Spray C R, Phinney B O, MacMillan J. Metabolism of gibberellin A20 to gibberellin A1 by tall and dwarf mutants of Oryza sativa and Arabidopsis thaliana. Plant Physiol, 1994, 106: 1367–1372[19]Kobayashi M, Kamiya Y, Sakurai A, Saka H, Takahashi N. Metabolism of gibberellins in cell-free extracts of anthers from normal and dwarf rice. Plant Cell Physiol, 1990, 31: 289–293[20]Hironori I, Miyako U T, Naoki S, Hidemi K, Makoto M, Masatomo K. Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA, 2001, 98: 8909–8914[21]Wang H(王慧), Liu Y-Z(刘永柱), Zhang J-G(张建国), Chen Z-Q(陈志强). Genetic analysis of space induced rice dwarf mutant CHA-1 and its response to gibberellic acid (GA3). Chin J Rice Sci (中国水稻科学), 2004, 18(5): 391–395 (in Chinese with English abstract) [22]Lanahan M B, Ho T H. Slender barley: A constitutive gibberellin-response mutant. Planta, 1988, 175: 107–114[23]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325[24]Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Symp, 1977, 16: 1–18[25]Miyako U T, Yukiko F, Masatomo K, Motoyuki A, Yukimoto I, Hidemi K, Makoto M. Rice dwarf mutant d1, which is defective in the a subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 21: 11638–11643[26]Khoury G, Gruss P. Enhancer elements. Cell, 1983, 33: 313–314 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[14] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[15] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
|