欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1416-1424.doi: 10.3724/SP.J.1006.2012.01416

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

两个新的水稻Dwarf18基因强等位突变体的表型分析及分子鉴定

侯雷1,2,袁守江3,尹亮3,赵金凤2,万国峰1,张文会1,*,李学勇2,*   

  1. 1 聊城大学生命科学学院,山东聊城252059;2 中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程,北京100081;3 山东省水稻研究所,山东济南250100
  • 收稿日期:2012-02-02 修回日期:2012-04-20 出版日期:2012-08-12 网络出版日期:2012-06-04
  • 通讯作者: 张文会, E-mail: whzhang@lcu.edu.cn, Tel: 135635
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB100200)资助。

Phenotypic Analysis and Molecular Characterization of Two Allelic Mutants of the Dwarf18 Gene in Rice

HOU Lei1,2,YUAN Shou-Jiang3,YIN Liang3,ZHAO Jin-Feng2,WAN Guo-Feng1,ZHANG Wen-Hui1,*,LI Xue-Yong2,*   

  1. 1 School of Life Science, Liaocheng University, Liaocheng 252059, China; 2 National Key Facility for Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Shandong Rice Research Institute, Jinan 250100, China
  • Received:2012-02-02 Revised:2012-04-20 Published:2012-08-12 Published online:2012-06-04
  • Contact: 张文会, E-mail: whzhang@lcu.edu.cn, Tel: 135635

摘要: 通过EMS诱变日本晴获得了s2-9s1-146a两个矮秆突变体,其植株矮小,成熟期株高分别为日本晴的26.3%和19.2%;苗期叶片较宽,叶色深绿;穗型仍为散穗但穗长变短,粒型未发生改变。对水稻胚乳的α-淀粉酶诱导实验表明,这两个矮秆突变体与GA的信号传导途径无关,外源活性GA3对水稻幼苗株高的促进实验显示它们应与赤霉素的生物合成有关。利用突变体与籼稻品种Dular分别杂交构建了F2群体,精细定位表明这2个突变体的表型与水稻Dwarf18 (D18)基因紧密连锁。序列分析发现这两个矮秆突变体的D18基因均发生了突变:在s2-9突变体中D18基因的内含子3' 拼接点发生单碱基突变,s1-146aD18基因编码区的单碱基突变导致提前终止密码子的出现。RT-PCR结果显示,在s1-146aD18基因表达明显增强,但在s2-9中未检测到D18基因的表达。

关键词: 水稻, 矮秆突变体, Dwarf18, 赤霉素, 精细定位

Abstract: We identified two strong dwarf mutants from Nipponbare by EMS mutagenesis, designated as s2-9 and s1-146a. The plant height of these two mutants was 26.3% and 19.2% of that of Nipponbare at the mature stage. They also had wider and dark green leaf at seedling stage. The GA3 treatment of seedling and α-amylase activity analysis in endosperm showed that the mutated gene was involved in GA biosynthesis. Fine mapping showed that the mutant phenotype was tightly linked with the d18 locus. There was a single nucleotide substitution at the 3'-splicing site between the first intron and the 2nd exon in s2-9, whereas there was a single nucleotide substitution in the 2nd exon in s1-146a, which caused a premature stop codon. Semi quantitative RT-PCR revealed that transcript of the D18 gene was up-regulated in s1-146aas compared with WT, but was not detected in s2-9.

Key words: Rice, Dwarf mutant, Dwarf 18, GA, Fine mapping

[1]Davies P J. Plant Hormones: Physiology, Biochemistry and Molecular Biology. Netherlands: Kluwer Academic Publishers, 1995. pp 13–38

[2]Bleecker A B, Schuette J L, Kende H. Anatomical analysis of growth and developmental patterns in the internode of deepwater rice. Planta, 1986, 169: 490–497

[3]Cosgrove D J. Plant cell enlargement and the action of expansins. Bioessays, 1996, 18: 533–540

[4]Cho H T, Kende H. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell, 1997, 9: 1661–1667

[5]Potter L, Fry S C. Xyloglucan endotransglycosylase activity in pea internodes. Plant Physiol, 1993, 103: 235–241

[6]Uozu S, Tanaka_U M, Kitano H, Hattori K, Matsuoka M. Characterization of XET_related genes of rice. Plant Physiol, 2000, 122: 853–859

[7]Sauter M, Seagull R W, Kende H. Internodal elongation and orientation of cellulose microfibrils and microtubules in deep water rice. Planta, 1993, 190: 354–362

[8]Kinoshita T, Shinbashi N. Identification of dwarf genes and their character expression in the isogenic background. Jpn J Breed, 1982, 32: 219–231

[9]Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell, 1995, 7: 1307–1317

[10]Chiang H H, Hwang I, Goodman H M. Isolation of the Arabidopsis GA4 locus. Plant Cell, 1995, 7: 195–201

[11]Martin D N, Proebsting W M, Hedden P. The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiol, 1999, 121: 775–781

[12]Thomas S G, Phillips A L, Hedden P. Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA, 1999, 96: 4698–4703

[13]Fujioka S, Yamane H, Spray C R, GAkin P, MacMillan J, Phinney B O, Takahashi, N. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol, 1988, 88: 1367–1372

[14]Martin D N, Proebsting W M, Hedden P. Mendel’s dwarfing gene: cDNAs from the Lealleles and function of the expressed proteins. Proc Natl Acad Sci USA, 1997, 94: 8907–8911

[15]Lester D R, Ross J J, Davies P J, Reid J B. Mendel’s stem length gene (Le) encodes a gibberellin 3 β-hydroxylase. Plant Cell, 1997, 9: 1435–1443

[16]Tomoaki S, Koutarou M, Hironori I, Tomoko T, Miyako U T, Kanako I, Masatomo K, Ganesh K A, Shin T, Kiyomi A, Akio M, Hirohiko H, Hidemi K Motoyuki A, Makoto M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134: 1642–1653

[17]Kobayashi M, Sakurai A, Saka H, Takahashi N. Quantitative analysis of endogenous gibberellins in normal and dwarf cultivars of rice. Plant Cell Physiol, 1989, 30: 963–969

[18]Kobayashi M, GAkin P, Spray C R, Phinney B O, MacMillan J. Metabolism of gibberellin A20 to gibberellin A1 by tall and dwarf mutants of Oryza sativa and Arabidopsis thaliana. Plant Physiol, 1994, 106: 1367–1372

[19]Kobayashi M, Kamiya Y, Sakurai A, Saka H, Takahashi N. Metabolism of gibberellins in cell-free extracts of anthers from normal and dwarf rice. Plant Cell Physiol, 1990, 31: 289–293

[20]Hironori I, Miyako U T, Naoki S, Hidemi K, Makoto M, Masatomo K. Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA, 2001, 98: 8909–8914

[21]Wang H(王慧), Liu Y-Z(刘永柱), Zhang J-G(张建国), Chen Z-Q(陈志强). Genetic analysis of space induced rice dwarf mutant CHA-1 and its response to gibberellic acid (GA3). Chin J Rice Sci (中国水稻科学), 2004, 18(5): 391–395 (in Chinese with English abstract)

[22]Lanahan M B, Ho T H. Slender barley: A constitutive gibberellin-response mutant. Planta, 1988, 175: 107–114

[23]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325

[24]Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Symp, 1977, 16: 1–18

[25]Miyako U T, Yukiko F, Masatomo K, Motoyuki A, Yukimoto I, Hidemi K, Makoto M. Rice dwarf mutant d1, which is defective in the a subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 21: 11638–11643

[26]Khoury G, Gruss P. Enhancer elements. Cell, 1983, 33: 313–314
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[14] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[15] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!