欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1716-1722.doi: 10.3724/SP.J.1006.2012.01716

• 研究简报 • 上一篇    下一篇

小麦多子房和单子房性状的差异蛋白质组学研究

王志军,马守才*,毕晓静,史秀秀,李清峰,韩芳,亓佳佳,王书平,张改生,牛娜   

  1. 西北农林科技大学国家杨凌农业生物技术育种中心 / 国家小麦改良中心杨凌分中心 / 小麦育种教育部工程研究中心 / 陕西省作物杂种优势研究与利用重点实验室, 陕西杨凌 712100
  • 收稿日期:2012-02-16 修回日期:2012-06-06 出版日期:2012-09-12 网络出版日期:2012-07-03
  • 通讯作者: 马守才, E-mail: mashoucai@sohu.com, Tel: 13991218803
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2009AA101102), 陕西省自然科学基金(2012JM3003)和西北农林科技大学2009年唐仲英育种基金资助。

Differential Proteomics on Multi-Ovary and Mono-Ovary Trait of Wheat

WANG Zhi-Jun,MA Shou-Cai*,BI Xiao-Jing,SHI Xiu-Xiu,LI Qing-Feng,HAN Fang,QI Jia-Jia,WANG Shu-Ping,ZHANG Gai-Sheng,NIU Na   

  1. Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Center / Wheat Breeding Engineering Research Center, Ministry of Education / Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China?
  • Received:2012-02-16 Revised:2012-06-06 Published:2012-09-12 Published online:2012-07-03
  • Contact: 马守才, E-mail: mashoucai@sohu.com, Tel: 13991218803

摘要: 小麦多子房性状的蛋白质组学特性和形成机制及其在小麦杂种优势中的应用可能提供理论依据。为揭示以小麦单子房品系77(2)及其多子房近等基因系Mu77(2)为材料, 采用TCA-丙酮法提取穗分化至四分体时期的幼穗总蛋白, 并通过IEF/SDS-PAGE双向凝胶电泳分离, 获得了分辨率和重复性较好的蛋白质组差异图谱。在等电点4~7、分子量14.4~97.4 kD之间发现约450个肉眼可辨的蛋白点, 其中上调2倍以上且达到99%统计学显著水平的差异表达蛋白点30个。对6个特异性差异蛋白点作二级质谱(LC-MS/MS)分析, 结果表明它们是富含甘氨酸RNA结合蛋白(S1)、SGT1-1(S2)、HMG-I/Y(S3)、谷胱甘肽转移酶(S4)、果糖1,6-二磷酸醛缩酶(S5)和未知蛋白(S6)。这些蛋白质对DNA转录、蛋白质翻译、能量转换及代谢、抗逆防卫等生理生化过程起调控作用, 可能与小麦多子房性状的形成有关。

关键词: 小麦, 多子房, 二级质谱, 双向电泳

Abstract:  Muliti-ovary is a favorable trait that might be a solution for increasing the yield of hybrid seed in wheat. In this study, the differential proteins of panicles at tetrad stage were detected between the mono-ovary line 77(2) and its near-isogenic multi-ovary line Mu77(2) using SDS-PAGE method. Approximately 450 protein spots were observed in the 2-DE gels within the area of pH 4–7 and molecular weight 14.4–97.4 kD, of which 30 were identified as differential protein spots with at least double expression levels and 99% statisticalty significant difference. Six specific protein spots with differential expressions were then analyzed using LC-MS/MS method. The result showed that they are glycine-rich RNA-binding protein (S1), SGT1-1 (S2), HMG-I/Y protein (S3), glutathione transferase (S4), fructose-bisphosphate aldolase (S5), and unnamed protein (S6). These proteins are involved in the regulation of DNA transcription, protein translation, energy metabolism, signal transduction, plants defense, and other resistance function, and might be related to the formation of multi-ovary in wheat.

Key words: Wheat, Multi-ovary trait, LC-MS/MS, Two-dimensional electrophoresis

[1]Chen J-S(陈济世), Zhang L-H(张岭华), Wu B-L(吴秉礼). The preliminary report on the discovery and selection of “Three wheat”. Acta Agron Sin (作物学报), 1983, 9(1): 69-72 (in Chinese with English abstract)

[2]Ma S-C(马守才), Zhang G-S(张改生), Liu H-W(刘宏伟), Wang J-W(王军卫). Studies on the application of multi-ovary character to hybrid wheat. Acta Bot Boreali-Occident Sin (西北植物学报), 2002, 22(6): 1295-1299 (in Chinese with English abstract)

[3]Wang Y-Z(王耀芝), Ding H-B(丁惠宾), Jin Z-L(金芝兰). Initiation and development of flowers in a multi-pistil wheat. Acta Bot Boreali-Occident Sin (西北植物学报), 1989, 9(3): 131-135 (in Chinese with English abstract)

[4]Chen W(陈炜), Liu W-Y(刘维营), Lei Q(雷清), Ding H-B(丁惠宾), Wang L-S(王仑山). Comparative study of peroxidase isozyme and proteins of trigrainand and common wheat in seedlings. Acta Agron Sin (作物学报), 1999, 25(5): 650-653 (in Chinese with English abstract)

[5]Wang J-W(王军卫), Zhang G-S(张改生), Liu H-W(刘宏伟), Song Y-Z(宋亚珍), Niu N(牛娜). Detection of A RAPD marker linked to dominant multi-ovary gene in wheat (Triticum aestivum). J Agric Biotechnol (农业生物技术学报), 2005, 13(5): 553-556 (in Chinese with English abstract)

[6]Zhang G-H(张国慧), Zhang G-S(张改生), Ge F-H(葛峰辉), Niu N(牛娜), Ma S-C(马守才), Pan D-L(潘栋梁), Wang K(汪奎). Study on factors influencing penetrance of multi-ovary in wheat. J Plant Genet Resour (植物遗传资源学报), 2008, 9(4): 528-530 (in Chinese with English abstract)

[7]Shen G-H(沈光华), Tong Y-Z(童一中), Shen G-Z(沈革志). Localization of the gene multi-ovary on chromosome and chromosome-arm of common wheat using monosomic and ditelosomic analysis. Acta Genet Sin (遗传学报), 1992, 19(6): 513-516 (in Chinese with English abstract)

[8]Wu J(武军), Li B-Q(李邦琴), Zhao J-X(赵继新). Genetic analysis of multi-ovary character of trigrain wheat. J Northwest Agric Univ (西北农业大学学报), 2000, 28(6): 58-60 (in Chinese with English abstract)

[9]Ma S-C(马守才), Zhang G-S(张改生), Niu N(牛娜). Breeding of near-isogeniclines of multi-ovary character in wheat and their genetic background evaluation. J Nucl Agric Sci (核农学报), 2007, 21(6): 585-588 (in Chinese with English abstract)

[10]Li X F, Ma S C, Zhang G S, Niu N, Wei F, Rebonoang T, Zhao H. Identification and expression analysis of genes related to multi-ovary in wheat (Triticum aestivum L.). Seed Sci Technol, 2011, 20: 54-73

[11]Xu Y-P(徐幼平), Xu Q-F(徐秋芳), Cai X-Z(蔡新忠). Optimization of total protein extraction from tomato leaves for two-D gel electrophoresis analysis. Acta Agric Zhejiangensis (浙江农业学报), 2007, 19(2): 71-74 (in Chinese with English abstract)

[12]Chen R-H(陈蕊红), Ye J-X(叶景秀), Zhang G-S(张改生), Wang J-S(王俊生), Niu N(牛娜), Ma S-C(马守才), Zhao J-X(赵继新), Zhu J-C(朱建楚). Differential proteomic analysis of anther proteins between cytoplasmic-nuclear male sterility line and its maintainer in wheat (Triticum aestivum L.). Prog Biochem Biophys (生物化学与生物物理进展), 2009, 36(4): 431-440 (in Chinese with English abstract)

[13]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein dye binding. Anal Biochem, 1976, 72: 248-254

[14]Ye J-X(叶景秀), Chen R-H(陈蕊红) Zhang G-S(张改生), Wang J-S(王俊生), Wang S-P(王书平), Li L(李莉), Niu N(牛娜), Ma S-C(马守才), Li H-X(李红霞), Zhu J-C(朱建楚). Analysis on anther proteins of wheat male sterile line induced by chemical hybridizing agent SQ-1. J Agric Biotechnol (农业生物技术学报), 2009, 17(5): 858-864 (in Chinese with English abstract)

[15]Wang J(汪静), Yuan L(袁琳), Chen X-M(陈晓明). An Improved technique for protein staining with CBB G250. J Med Mol Biol (医学分子生物学杂志), 2006, 3(6): 423-425 (in Chinese with English abstract)

[16]Ma S-C(马守才), Zhang G-S(张改生), Niu N(牛娜). Breeding of near-isogenic lines of multi-ovary character in wheat and their genetic background evaluation. J Nucl Agric Sci (核农学报), 2007, 21(6): 585-588 (in Chinese with English abstract)

[17]Kim J Y, Kim W Y, Kwak K J, Oh S H, Han Y S, Kang H S. Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J Exp Bot, 2010, 61: 2317-2325

[18]Nomata T, Kabeya Y, Sato N. Cloning and characterization of glycine-rich RNA-binding protein cDNAs in the moss Physcomitrella patens. Plant Cell Physiol, 2004, 45: 48-56

[19]Lu X-P(卢秀萍), Chen X-J(陈学军), Liu Y(刘勇), Tang Q-H(唐启慧), Chen Y-B(陈禹保), Li W-Z(李文正). Expression of the glycine-rich RNA-binding protein of tobacco in E. coli . China Biotechnol (中国生物工程杂志), 2010, 30(8): 29-30 (in Chinese with English abstract)

[20]Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science, 2002, 295: 2073-2076

[21]Holt III B F, Belkhadir Y, Dangl J L. Antagonistic control of disease resistance protein stability in the plant immune system. Science, 2005, 309: 929-932

[22]Zheng H-J(郑宏江), He S-J(何锶洁), Dai S-H(戴顺洪). Some improvements of the biolistic transformation system for Oryza. Chin J Biotechnol (生物工程学报), 1994, 12(suppl): 111-115 (in Chinese with English abstract)

[23]Wang K(王凯), Du L-P(杜丽璞), Zhang Z-Y(张增艳), Liao Y(廖勇), Xu H-J(徐惠君), Yao W-L(姚乌兰), Yang K(杨昆), Shao Y-J(绍艳军), Xin Z-Y(辛志勇). Isolation and preliminarily functional analysis of SGT1 gene of Thinopyrum intermedium. Acta Agron Sin (作物学报), 2008, 34(3): 520-525 (in Chinese with English abstract)

[24]Baxevanis A D, Landsmanb D. The AMG-1 box protein family: classification and functional relationships .Nucl Acids Res, 1995, 23: 1604-1613

[25]Riccardo S, Salvina Z, Alessandra L S, Elisa M, Laura A, Silvia P, Vincenzo G, Guidalberto M. HMGA molecular network: from transcriptional regulation to chromatin remodeling. Biochim Biophys Acta, 2010, 1799: 37-47

[26]Martinez H J, Fedele M, Battista S. Identification of the genes up-and down-regulated by the high mobility group A1 (HMGA1) proteins: tissue specificity of the HMGA1-dependent gene regulation. Cancer Res, 2004, 64: 28-35

[27]Cai Q-F(蔡群芳). The research of glutathione S-transferase. J Hainan Med Univ (海南医学院学报), 2011, 17(12): 1735-1737 (in Chinese with English abstract)

[28]Zettl R, Schell J, Palme K. Photoaffinity labeling of arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3H] indole-3-acetic acid: identification of a glutathione S-transferase. Proc Natl Acad Sci USA, 1994, 91: 689-693

[29]Edwards R, Dixon D P, Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci, 2000, 5: 193-198

[30]Mitrovic S M, Pflugmacher S, James K J. Anatoxina elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants. Aquat Toxicol, 2004, 68: 185-192

[31]Roxas V P, Smith R K, Allen E R, Allen R D. Over expression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol, 1997, 15: 988-991

[32]Moons A. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm, 2005, 72: 155-202

[33]Penh O, Rajkumar T, Rutter W J. Multiple forms of fructose diphosphate aldolase in mammalian tissues. Proc Natl Acad Sci USA, 1966, 56: 1275-1282

[34]Wei F, Zhili Z, Yan L Z. Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Physiol Biochem, 2009, 28: 975-984
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!