作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1710-1715.doi: 10.3724/SP.J.1006.2012.01710
邵瑞鑫1,2,信龙飞1,杨青华1,上官周平2,*
SHAO Rui-Xin1,2,XIN Long-Fei1,YANG Qing-Hua1,SHANG-GUAN Zhou-Ping2,*
摘要: 以0.1 mmol L-1 SNP为NO供体,对小麦幼苗根系进行-0.5 MPa PEG胁迫处理,研究了NO对胁迫后叶片电子传递、光能分配和反应中心开放等PSII功能的影响,以探讨NO在干旱条件下对植物光合作用的调节作用。在干旱胁迫的第1天和第3天,SNP处理不但增加了水势(Ψw)和叶绿素含量,且能维持PSII反应中心的电子传递(ФPSII和Fm/Fo)及潜在高光合效率(Fv/Fo);干旱胁迫减少了PSII反应中心开放的比例(qP)和PSII反应中心捕获光能的转化效率,但SNP处理后PSII开放反应中心的比例增加,利于干旱条件下叶片吸收的能量用于光化学反应(Pr)和PSII反应中心安全地耗散过剩光能。综上所述,干旱条件下NO对小麦幼苗叶片的PSII功能具有调节作用。
[1]Kaoua M E, Serraj R, Benichou M, Hsissou D. Comparative sensitivity of two Moroccan wheat varieties to water stress: the relationship between fatty acids and proline accumulation. Bot Stud, 2006, 47: 51-60[2]Baquedano F J, Castillo F J. Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees, 2006, 20: 689-700[3]Maxwell K, Johnson G N. Chlorophyll fluorescence: a practical guide. J Exp Bot, 2000, 51: 659-668[4]Panda D, Dash P K, Dhal N K, Rout N C. Chlorophyll fluorescence parameters and chlorophyll content in mangrove species grown in different salinity. Gen Appl Plant Physiol, 2006, 32: 175-180 [5]Calatayud A. Chlorophyll a fluorescence as indicator of atmospheric pollutant effects. Toxicol Environ Chem, 2007, 89: 627-639[6]Golding A J, Johnson G N. Down-regulation of linear and activation of cyclic electron transport during drought. Planta, 2003, 218: 107-114[7]Duan H G, Yuan S, Liu W J, Xi D H, Qing D H, Liang H G, Lin H H. Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. J Integr Plant Biol, 2006, 48: 920-927[8]Szepesi A, Csiszár J, Bajkán S, Gémes K, Horváth F, Erdei L, Deér A K, Simon M L, Tari I. Role of salicylic acid pretreatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biol Szeged, 2005, 49: 123-125[9]Dodd I C, Critchley C, Woodall G S, Stewart G R. Photoinhibition in differently colored juvenile leaves of Syzygium species. J Exp Bot, 1998, 49: 1437-1445[10]Dulai S, Molnár I, Prónay J, Csernák Á, Tarnai R, Láng M M. Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats. Acta Biol Szeged, 2006, 50: 11-17[11]Baroli I, Melis A. Photoinhibitory damage is modulated by the rate of photosynthesis and by the photosystem II light-harvesting chlorophyll antenna size. Planta, 1998, 205: 288-296[12]Jasid S, Simontacchi M, Bartoli C G, Puntarulo S. Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol, 2006, 142: 1246-1255[13]Bright J, Desikan R, Hancock J T, Weir I S, Neill S J. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J, 2006, 45: 113-122 [14]Oh J I, Kaplan S. Generalized approach to the regulation and integration of gene expression. Mol Microbiol, 2001, 39: 1116-1123[15]Pfannschmidt T. Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci, 2003, 8: 33-41[16]Wendehenne D, Durner J, Klessig D F. Nitric oxide: a new player in plant signaling and defense responses. Curr Opin Plant Biol, 2004, 7: 449-455[17]Grün S, Lindermayr C, Sell S, Durner J. Nitric oxide and gene regulation in plants. J Exp Bot, 2006, 57: 507-516[18]Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta, 2000, 210: 215-221[19]Zhang Y Y, Wang L L, Liu Y L, Zhang Q, Wei Q P, Zhang W H. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 2006, 224: 545-555[20]Wang Y S, Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol, 2005, 46: 1915-1923[21]Beligni M V, Lamattina L. Nitric oxide in plants: the history is just beginning. Plant Cell Environ, 2001, 24: 267-278[22]Shao R-X(邵瑞鑫), Shang-Guan Z-P(上官周平). Effects of exogenous nitric oxide donor sodium nitroprusside on photosynthetic pigment content and light use capability of PSII in wheat under water stress. Acta Agron Sin (作物学报), 2008, 34: 818-822 (in Chinese with English abstract)[23]Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 1995, 61: 32-42[24]Strasser R J, Sivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P, eds. Probing photosynthesis: mechanisms, regulation, and adaptation. London: Taylor and Francis Press, 2000. pp 445-483 [25]Strasser R J, Srivastava A, Tsimilli-Michael M. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou, Govindjee G, eds. Advances in Photosynthesis and Respiration. Dordrecht, the Netherlands: KAP Press, 2004. pp 1-42[26]Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 2003, 41: 321-330[27]Wilson K E, Ivanov A G, Öquist G, Grodzinski B, Sarhan F, Huner N P A. Energy balance, organellar redox status, and acclimation to environmental stress. Can J Bot, 2006, 84: 1355-1370[28]Delledonne M, Xia Y, Dixon R A, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585-588[29]Scholander P F, Bradstreet E D, Hemmingsen E A, Hammel H T. Sap pressure in vascular plants negative hydrostatic pressure can be measured in plants. Science, 1965, 148: 339-346[30]Demmig-Adams B, Adams III W W, Barker D H, Logan B A. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253-264[31]Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot, 2008, 59: 165-176[32]Beligni M V, Lamattina L. Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide, 1999, 3: 199-208[33]Shao R-X(邵瑞鑫), Shang-Guan Z-P(上官周平). Effects of exogenous nitric oxide at different concentrations on the growth and physiology of winter wheat seedlings. Acta Ecol Sin (生态学报), 2008, 28: 302-309 (in Chinese with English abstract)[34]Torres M A, Jones J D G, Dangl J L. Reactive oxygen species signaling in response to pathogens. Plant Physiol, 2006, 141: 373-378[35]Tas S, Tas B. Some physiological responses of drought stress in wheat genotypes with different ploidity in Turkiye. World J Ggric Sci, 2007, 3: 178-183[36]Hetherington A M. Guard cell signaling. Cell, 2001, 107: 711-714[37]Schroeder J I, Allen G J, Hugouvieux V, Kwak J M., Waner D. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 627-658[38]Lesser M P. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol, 2006, 68: 253-278[39]Mallick N, Mohn F H, Soeder C J, Grobbelaar J U. Ameliorative role of nitric oxide on H2O2 toxicity to a chlorophycean alga Scenedesmus obliquus. J Gen Appl Microbiol, 2002, 48: 1-7[40]Akio U, Andre T J, Takashi H, Temhiro T, Tetsuko T. Effects of hydrogen peroxide and nitric oxide on both salt and Heat stress tolerance in rice. Plant Sci, 2002, 163: 515-523[41]Lamattina L, Mata C G, Graziano M, Pagnussat G. Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol, 2003, 54: 109-136[42]Lazalt A M, Beligni M V, Lamattina L. Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. Eur J Plant Pathol, 1997, 103: 643-651[43]Kitao M, Lei T T, Koike T, Tobita H, Maruyama Y. Higher electron transport rate observed at low intercellular CO2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiol Plant, 2003, 118: 406-413[44]Yang J-D(杨甲定), Zhao H-L(赵哈林), Zhang T-H(张铜会), Yun J-F(云建飞). Effects of exogenous nitric oxide on photochemical activity of photosystem II in potato leaf tissue under non-stress condition. Acta Bot Sin (植物学报), 2004, 46:1009-1014 (in Chinese with English abstract) |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[11] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[12] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[13] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[14] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[15] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
|