欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1710-1715.doi: 10.3724/SP.J.1006.2012.01710

• 耕作栽培·生理生化 • 上一篇    下一篇

NO对干旱条件下小麦幼苗PSII功能特性的调节效应

邵瑞鑫1,2,信龙飞1,杨青华1,上官周平2,*   

  1. 1 河南农业大学农学院 / 河南省粮食作物生理生态与遗传改良重点实验室,河南郑州 450002; 2 黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌 712100
  • 收稿日期:2011-12-21 修回日期:2012-04-20 出版日期:2012-09-12 网络出版日期:2012-07-03
  • 通讯作者: 上官周平, E-mail: shangguan@ms.iswc.ac.cn
  • 基金资助:

    本研究由中国科学院知识创新工程重大项目课题(KZCX2-YW-JC408)和河南省基础研究项目(122300410012)资助。

Modulation of Exogenous Nitric Oxide on Photosystem II Functions in Wheat Seedlings under Drought Stress

SHAO Rui-Xin1,2,XIN Long-Fei1,YANG Qing-Hua1,SHANG-GUAN Zhou-Ping2,*   

  1. 1 Agronomy College of Henan Agriculture University / Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou 450002, China; 2 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Yangling, 712100, China
  • Received:2011-12-21 Revised:2012-04-20 Published:2012-09-12 Published online:2012-07-03
  • Contact: 上官周平, E-mail: shangguan@ms.iswc.ac.cn

摘要: 以0.1 mmol L-1 SNP为NO供体,对小麦幼苗根系进行-0.5 MPa PEG胁迫处理,研究了NO对胁迫后叶片电子传递、光能分配和反应中心开放等PSII功能的影响,以探讨NO在干旱条件下对植物光合作用的调节作用。在干旱胁迫的第1天和第3天,SNP处理不但增加了水势(Ψw)和叶绿素含量,且能维持PSII反应中心的电子传递(ФPSIIFm/Fo)及潜在高光合效率(Fv/Fo);干旱胁迫减少了PSII反应中心开放的比例(qP)和PSII反应中心捕获光能的转化效率,但SNP处理后PSII开放反应中心的比例增加,利于干旱条件下叶片吸收的能量用于光化学反应(Pr)和PSII反应中心安全地耗散过剩光能。综上所述,干旱条件下NO对小麦幼苗叶片的PSII功能具有调节作用。

关键词: 一氧化氮, PSII功能, 叶绿素, 小麦, 干旱胁迫

Abstract: Nitric oxide (NO) has emerged as a key molecule involving in tolerating various abiotic stresses that induce physiological responses in plants. To characterize the role of NO in tolerance of photosystem II (PSII) to drought stress induced by polyethylene glycol (PEG), we used sodium nitroprusside (SNP) of 0.1 mmol L-1as exogenous NO donor to study the biologically protective effects of NO at a low concentration on PSII functions in wheat (Triticum aestivum L.) seedlings hydroponically grown under -0.5 MPa PEG stress. Under drought stress, SNP supplement increased the water potential (Ψw) and chlorophyll content, maintained favorable status of electron transport (ФPSII and Fm/Fo) and potential high activity of PSII reaction centers (Fv/Fo) on the first and third days of treatment. The open proportion of PSII reaction centers (qP) and absorbed-light allocation to photochemical reaction(Pr)were higher in the treatment of SNP supplement under drought stress than in only PEG treatment. SNP alleviated drought-induced inhibition to absorbed-energy conversion of open PSII (Fv′/Fm′), safely dissipating excessive light energy in PSII reaction centers. Therefore, NO could modulate the PSII functions in photosynthesis of wheatseedlings hydroponically exposed to PEG stress.

Key words: Nitric oxide, PSII functions, Chlorophyll content, Wheat, Drought stress

[1]Kaoua M E, Serraj R, Benichou M, Hsissou D. Comparative sensitivity of two Moroccan wheat varieties to water stress: the relationship between fatty acids and proline accumulation. Bot Stud, 2006, 47: 51-60

[2]Baquedano F J, Castillo F J. Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees, 2006, 20: 689-700

[3]Maxwell K, Johnson G N. Chlorophyll fluorescence: a practical guide. J Exp Bot, 2000, 51: 659-668

[4]Panda D, Dash P K, Dhal N K, Rout N C. Chlorophyll fluorescence parameters and chlorophyll content in mangrove species grown in different salinity. Gen Appl Plant Physiol, 2006, 32: 175-180

[5]Calatayud A. Chlorophyll a fluorescence as indicator of atmospheric pollutant effects. Toxicol Environ Chem, 2007, 89: 627-639

[6]Golding A J, Johnson G N. Down-regulation of linear and activation of cyclic electron transport during drought. Planta, 2003, 218: 107-114

[7]Duan H G, Yuan S, Liu W J, Xi D H, Qing D H, Liang H G, Lin H H. Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. J Integr Plant Biol, 2006, 48: 920-927

[8]Szepesi A, Csiszár J, Bajkán S, Gémes K, Horváth F, Erdei L, Deér A K, Simon M L, Tari I. Role of salicylic acid pretreatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biol Szeged, 2005, 49: 123-125

[9]Dodd I C, Critchley C, Woodall G S, Stewart G R. Photoinhibition in differently colored juvenile leaves of Syzygium species. J Exp Bot, 1998, 49: 1437-1445

[10]Dulai S, Molnár I, Prónay J, Csernák Á, Tarnai R, Láng M M. Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats. Acta Biol Szeged, 2006, 50: 11-17

[11]Baroli I, Melis A. Photoinhibitory damage is modulated by the rate of photosynthesis and by the photosystem II light-harvesting chlorophyll antenna size. Planta, 1998, 205: 288-296

[12]Jasid S, Simontacchi M, Bartoli C G, Puntarulo S. Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol, 2006, 142: 1246-1255

[13]Bright J, Desikan R, Hancock J T, Weir I S, Neill S J. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J, 2006, 45: 113-122

[14]Oh J I, Kaplan S. Generalized approach to the regulation and integration of gene expression. Mol Microbiol, 2001, 39: 1116-1123

[15]Pfannschmidt T. Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci, 2003, 8: 33-41

[16]Wendehenne D, Durner J, Klessig D F. Nitric oxide: a new player in plant signaling and defense responses. Curr Opin Plant Biol, 2004, 7: 449-455

[17]Grün S, Lindermayr C, Sell S, Durner J. Nitric oxide and gene regulation in plants. J Exp Bot, 2006, 57: 507-516

[18]Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta, 2000, 210: 215-221

[19]Zhang Y Y, Wang L L, Liu Y L, Zhang Q, Wei Q P, Zhang W H. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 2006, 224: 545-555

[20]Wang Y S, Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol, 2005, 46: 1915-1923

[21]Beligni M V, Lamattina L. Nitric oxide in plants: the history is just beginning. Plant Cell Environ, 2001, 24: 267-278

[22]Shao R-X(邵瑞鑫), Shang-Guan Z-P(上官周平). Effects of exogenous nitric oxide donor sodium nitroprusside on photosynthetic pigment content and light use capability of PSII in wheat under water stress. Acta Agron Sin (作物学报), 2008, 34: 818-822 (in Chinese with English abstract)

[23]Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 1995, 61: 32-42

[24]Strasser R J, Sivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P, eds. Probing photosynthesis: mechanisms, regulation, and adaptation. London: Taylor and Francis Press, 2000. pp 445-483

[25]Strasser R J, Srivastava A, Tsimilli-Michael M. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou, Govindjee G, eds. Advances in Photosynthesis and Respiration. Dordrecht, the Netherlands: KAP Press, 2004. pp 1-42

[26]Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 2003, 41: 321-330

[27]Wilson K E, Ivanov A G, Öquist G, Grodzinski B, Sarhan F, Huner N P A. Energy balance, organellar redox status, and acclimation to environmental stress. Can J Bot, 2006, 84: 1355-1370

[28]Delledonne M, Xia Y, Dixon R A, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585-588

[29]Scholander P F, Bradstreet E D, Hemmingsen E A, Hammel H T. Sap pressure in vascular plants negative hydrostatic pressure can be measured in plants. Science, 1965, 148: 339-346

[30]Demmig-Adams B, Adams III W W, Barker D H, Logan B A. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253-264

[31]Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot, 2008, 59: 165-176

[32]Beligni M V, Lamattina L. Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide, 1999, 3: 199-208

[33]Shao R-X(邵瑞鑫), Shang-Guan Z-P(上官周平). Effects of exogenous nitric oxide at different concentrations on the growth and physiology of winter wheat seedlings. Acta Ecol Sin (生态学报), 2008, 28: 302-309 (in Chinese with English abstract)

[34]Torres M A, Jones J D G, Dangl J L. Reactive oxygen species signaling in response to pathogens. Plant Physiol, 2006, 141: 373-378

[35]Tas S, Tas B. Some physiological responses of drought stress in wheat genotypes with different ploidity in Turkiye. World J Ggric Sci, 2007, 3: 178-183

[36]Hetherington A M. Guard cell signaling. Cell, 2001, 107: 711-714

[37]Schroeder J I, Allen G J, Hugouvieux V, Kwak J M., Waner D. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 627-658

[38]Lesser M P. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol, 2006, 68: 253-278

[39]Mallick N, Mohn F H, Soeder C J, Grobbelaar J U. Ameliorative role of nitric oxide on H2O2 toxicity to a chlorophycean alga Scenedesmus obliquus. J Gen Appl Microbiol, 2002, 48: 1-7

[40]Akio U, Andre T J, Takashi H, Temhiro T, Tetsuko T. Effects of hydrogen peroxide and nitric oxide on both salt and Heat stress tolerance in rice. Plant Sci, 2002, 163: 515-523

[41]Lamattina L, Mata C G, Graziano M, Pagnussat G. Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol, 2003, 54: 109-136

[42]Lazalt A M, Beligni M V, Lamattina L. Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. Eur J Plant Pathol, 1997, 103: 643-651

[43]Kitao M, Lei T T, Koike T, Tobita H, Maruyama Y. Higher electron transport rate observed at low intercellular CO2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiol Plant, 2003, 118: 406-413

[44]Yang J-D(杨甲定), Zhao H-L(赵哈林), Zhang T-H(张铜会), Yun J-F(云建飞). Effects of exogenous nitric oxide on photochemical activity of photosystem II in potato leaf tissue under non-stress condition. Acta Bot Sin (植物学报), 2004, 46:1009-1014 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!