作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2185-2191.doi: 10.3724/SP.J.1006.2012.02185
林呐,刘列钊,殷家明,王瑞,柴友荣,李加纳*
LIN Na,LIU Lie-Zhao,YIN Jia-Ming,WANG Rui,CHAI You-Rong,LI Jia-Na*
摘要:
利用黄籽甘蓝型油菜自交系建立和优化了遗传转化系统。首先构建了由质粒pCNR与Δ6脂肪酸脱氢酶基因插入到植物的高效表达载体pCAMBIA2301G。利用在Murashige和Skoog培养基(含有200 mmol L–1乙酰丁香酮)培养5~7 d的下胚轴外植体与农杆菌株LBA4404共培养63~69 h (pCNR),再于芽诱导培养基上培养3个月诱导芽再生。在最佳条件下,平均转化效率约为1.3%。转化植株的GUS分析和PCR分析结果表明,外源基因成功导入甘蓝型油菜。Southern杂交表明,这些转化子含有目标基因1~2个拷贝。用气相色谱分析转基因植物种子的脂肪酸,γ-亚麻酸含量达8.2%。
[1]Knutzon D S, Thompson G A, Radke S E, JohnsonW B, Knauf V C, Kridl J C. Modification of Brassica seed oil by antisense expression of a stearoly acyl carrier protein desaturase gene. Proc Natl Acad Sci USA, 1992, 89: 2624–2628[2]Shi S-W(石淑稳), Zhou Y-M(周永明), Sun X-C(孙学成), Zhang X-L(张献龙). Transformation of Brassica napus with herbicide resistance gene. J Huazhong Agric Univ (华中农业大学学报), 1998, 17(3): 205–210 (in Chinese with English abstract)[3]Xu B-B(许本波), Xie L-L(谢伶俐), Tian Z-H(田志宏), Yan H(严寒), He Y(何勇). Study on genetic transformation system of yellow-seed rapeseed (Brassica napus L.). Acta Agric Jiangxi (江西农业学报), 2007, 19 (8): 4–6 (in Chinese with English abstract)[4]Poulsen G B. Genetic transformation of Brassica. Plant Breed, 1996, 115: 209–225[5]Khan M R, Rashid H, Ansar M, Chaudry Z. High frequency shoot regeneration and Agrobacterium-mediated DNA transfer in Canola (Brassica napus). Plant Cell Tissue Organ Cult, 2003, 75: 223–231[6]Leng H(冷虹), Li J N(李加纳), Lu H(陆合), Chai Y R(柴友荣), Yin J M(殷家明). Construction of seed-specific expression vector of Δ6-fatty acid desaturase gene. Chin Agric Sci Bull (中国农学通报), 2006, 22: 66–70 (in Chinese with English abstract)[7]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6, 271–282[8]Hood E E, Chilton W S, Chilton M D, Fraley R T. T-DNA and opine synthetic loci in tumors incited by Agrobacterium tumefaciens A281 on soybean and alfalfa plants. J Bacteriol, 1986, 168: 1283–1290[9]Ohta S, Mita S, Hattori T, Nakamura K. Construction and expression in tobacco of a beta-glucoronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol, 1990, 31: 805–813[10]An G, Ebert R R, Mitra A. Binary vectors. In: Gelvin S B, Schilperroort R A, eds. Plant Molecular Biology Manual. Dordrecht: Kluwer Academic Publishers, 1988. A3: pp 1–19[11]Jefferson R A. Asaaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep, 1987, 5: 387–405[12]Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11–15[13]Rücker B, Röbbelen G. Impact of low linolenic acid content on seed yield of winter oilseed rape (Brassica napus L.). Plant Breed, 1996, 115: 226–230[14]Tsukazaki H, Kuginuki Y, Aida R, Suzuki T. Agrobacterium-mediated transformation of a doubled haploid line of cabbage. Plant Cell Rep, 2002, 21: 257–262[15]Godwin I, Todd G, Lloyd B F, Newbury H J. The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep, 1991, 9: 671–675[16]Godwin A K, Testa J R, Handel L M, Liu Z, Vanderveer L A, Tracey P A, Hamilton T C. Spontaneous transformation of rat ovarian surface epithelial cells: association with cytogenetic changes and implications for repeated ovulation in the etiology of ovarian cancer. J Nat Cancer Inst, 1992, 84: 592–601[17]Holford P, Hernandez N, Newbury H J. Factors influencing the efficiency of T-DNA transfer during co-cultivation of Antirrhinum majus with Agrobacterium bumefaciens. Plant Cell Rep, 1993, 11: 196–199[18]Metz T D, Dixit R, Earle E D. Agrobacterium tumefaciens mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep, 1995, 15: 287–292[19]Takasaki T, Hatakeyama K, Ojima K, Watanabe M, Toriyama K, Hinata K. Factors influencing Agrobacterium-mediated transformation of Brassica rapa L. Breed Sci, 1997, 47: 127–136[20]Henzi M X, Christey M C, McNeil D L. Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica). Plant Cell Rep, 2000, 19: 994–999[21]Deroles S C, Gardner R C. Analysis of T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol Biol, 1988, 11: 365–377[22]Stoger E, Fink C, Pfosser M, Heberle B E. Plant transformation by particle bombardment of embryogenic pollen. Plant Cell Rep, 1995, 14: 273–278 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[8] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[9] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[10] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[11] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[14] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[15] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
|