欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 60-67.doi: 10.3724/SP.J.1006.2013.00060

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基因枪转化小麦主要轰击参数的优化

闵东红1,何莎1,2,张彦2,夏兰琴2,*   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100; 2中国农业科学院作物科学研究所, 北京100081
  • 收稿日期:2012-04-19 修回日期:2012-09-05 出版日期:2013-01-12 网络出版日期:2012-11-14
  • 通讯作者: 夏兰琴, E-mail: xialq@mail.caas.net.cn, Tel: 010-82105804
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2011ZX08010-004)资助。

Optimization of Key Bombardment Parameters in Biolistic Mediated Transformation in Wheat

MIN Dong-Hong,HE Sha,ZHANG Yan,XIA Lan-Qin*   

  1. 1 College of Agronomy, Northwest A&F University, Yangling, Shanxi 712100, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2012-04-19 Revised:2012-09-05 Published:2013-01-12 Published online:2012-11-14
  • Contact: 夏兰琴, E-mail: xialq@mail.caas.net.cn, Tel: 010-82105804

摘要:

基因枪转化是目前小麦遗传转化的主要方法。影响基因枪转化效率的主要参数有轰击距离、轰击压力、DNA总量及浓度、金粉颗粒大小及用量等。为改善目前小麦遗传转化效率偏低的现状, 以普通小麦品种科农199为受体材料, 设金粉大小(0.6 μm1.0 μm)、轰击距离(5.5 cm8.5 cm)及轰击压力(6509001100 psi)三因素共12个处理, 利用pAHC25质粒转化小麦幼胚, 以确定最佳轰击参数, 建立稳定高效的普通小麦基因枪转化体系。结果表明, 3个因素的不同组合对幼胚的愈伤诱导效率没有明显影响, 但对再生率影响较大, 以金粉0.6 μm、轰击距离5.5 cm的再生率最高。3个因素组合的不同处理对GUS瞬时表达有明显影响, 以金粉0.6 μm、轰击距离5.5 cm和轰击压力650 psi处理的GUS瞬时表达量最高。本试验最终获得28株转基因植株, 其中12株来自金粉0.6 μm、轰击距离5.5 cm和轰击压力650 psi的处理, 该处理的平均转化率达2.66%

关键词: 小麦, 基因枪转化, 轰击参数, 转化效率

Abstract:

Biolistic mediated method is an important approach in wheat genetic transformation. The objective of this study was to optimize the bombardment parameters and establish an efficient and stable biolistic transformation system using common wheat (Triticum aestivum L.) variety Kenong 199with 12 treatments of parameter combinations composed of gold particle size, target distance, and acceleration pressure. The results indicated that different combinations of parameters had different effects on the transient expression of GUS gene encoding β-glucuronidase, regeneration of calli, and final transformation efficiency. The parameter combination of 0.6 μm gold, 5.5 cm target distance, and 650 psi acceleration pressure exhibited good regeneration and the highest level GUS transient expression. Furthermore, stable expression of GUS gene in transgenic lines was confirmed by histochemical staining assay. Of the 28 transgenic T0 plants obtained, 12 were from the treatment with the above optimized parameter combination, with an average transformation efficiency of 2.66%.

Key words: Wheat, Biolistic mediated-transformation, Bombardment parameter, Transformation efficiency

[1]Yu X-D(喻修道), Xu Z-S(徐兆师), Chen M(陈明), Li L-C(李连城), Ma Y-Z(马有志). The progress and application of wheat transformation technology. Sci Agric Sin (中国农业科学), 2010, 43(8): 1539–1553 (in Chinese with English abstract)



[2]Vasil V, Castillo A M, Fromm M E, Fromm M E, Vasil I K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol, 1992, 10: 667–674



[3]Wang H-Z(王华忠), Xing L-P(刑丽萍), Chen P-D(陈佩度). Transformation of powdery mildew resistance-related genes of wheat. Hereditas (遗传), 2007, 29(2): 243–249 (in Chinese with English abstract)



[4]Okubara P A, Blechl A E, McCormick S P, Alexander N J, Dill-Macky R, Hohn T M. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet, 2002, 106: 74–83



[5]Blechl A E, Anderson O D. Expression of a novel high-molecular-weight glutein subunit gene in transgenic wheat. Nat Biotechnol, 1996, 14: 875–879



[6]Barro F, Rooke L, Békés F, Gras P, Tatham A S, Fido R, Lazzeri P A, Shewry P R, Barceló P. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol, 1997, 15: 1295–1299



[7]Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham A S, Barcelo P, Lazzeri P, Shewry P R. Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci, 1999, 30: 115–120



[8]Sestili F, Janni M, Doherty A, Botticella E, D'Ovidio R, Masci S, Jones H D, Lafiandra D. Increasing the amylose content of durum wheat through silencing of the SBElla genes. BMC Plant Biol, 2010, 10: 144–164



[9]Rasco-Gaunt S, Riley A, Cannell M, Barcelo P, Lazzeri P A. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot, 2001, 52: 865–874



[10]Wu L M, Wei Y M, Zheng Y L. Effects of silver nitrate on the tissue culture of immature wheat embryos. Russian J Plant Physiol, 2006, 53: 530–534



[11]Mendoza M G, Kaeppler H F. Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L). In Vitro Cell Dev Biol Plant, 2002, 38: 39–45



[12]Viertel K, Hess D. Shoot tips of wheat as an alternative source for regenerable embryogenic callus cultures. Plan Cell Tiss Org Cult, 1996, 44: 183–188



[13]Takumi S, Shimada T. Production of transgenic wheat through particle bombardment of scutellar tissues: frequency is influenced by culture duration. J Plant Physiol, 1996, 149: 418–423



[14]Xia L Q, Ma Y Z, He Y, Jones H D. GM wheat development in China: current status and challenges to commercialization. J Exp Bot, 2012, 63: 1785–1790



[15]Vasil V, Srivastava V, Castillo A M, Fromm M E, Vasil I K. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology, 1993, 11: 1553–1558



[16]Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri P A. Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep, 1999, 19: 118–127



[17]Nehra N S, Chibbar R N, Leung N, Caswell K, Mallard C, Steinhauer L, Baga M, Kartha K K. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J, 1994, 5: 285–297



[18]Hagio T. Optimising the particle bombardment method for efficient genetic transformation. Jpn Agric Res Q, 1998, 32: 239–247



[19]Huang X(黄萱), Xu Z-Q(徐子勤), Hao J-G(郝建国), Li J(李晶). Factors affecting wheat (Triticum aestivum L.) transformation mediated by biolistic bombardment. J Wuhan Bot Res (武汉植物学研究), 2004, 22(2): 111–115 (in Chinese with English abstract)



[20]Indra K V, Vimla V. Transformation of Wheat via Particle Bombardment. In: Loyola-Vargas V M, Vázquez-Flota F, eds. Methods in Molecular Biology, Vol. 318. Plant Cell Culture Protocols, 2nd edn. Totowa: Humana Press, 2006. pp 273–283



[21]Zhao H(赵虹), Li M-Y(李名扬), Pei Y(裴炎), Guo J-L(郭金龙), Dong Y-M(董玉梅). Factors affecting wheat transformation efficiency by particle bombardment. J Sichuan Univ (Nat Sci Edn) (四川大学学报•自然科学版), 2001, 38(4): 570–574 (in Chinese with English abstract)



[22]Edson L K, Márcio José da Silva, Paulo A. Effect of microprojectile bombardment parameters and osmotic treatment on particle penetration and tissue damage in transiently transformed cultured immature maize (Zea mays L.) embryos. Plant Sci, 1996, 121: 85–93



[23]Evans J M, Batty N P. Ethylene precursors and antagonists increase embryogenesis of Hordeum vulgare L. anther culture. Plant Cell Rep, 1993, 13: 676–678



[24]Fernandez S, Michanx F N, Coumans M. The embryogenic response of immature embryo cultures of durum wheat (Triticum-durum Desf.) histology and improvement by AgNO3. Plant Growth Reg, 1999, 28: 147–155



[25]Fennell S, Bohorova N, Ginkel M V, Crossa J. Hoisington D A. Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats. Theor Appl Genet, 1996, 92: 163–169



[26]Liu W-H(刘伟华), Li W-X(李文雄), Hu S-L(胡尚连), Xu X-L(徐香玲), Li J-L(李集临). Study on influencing factors of tissue culture and biolistic bombardment in wheat. Acta Bot Boreali-Occid Sin (西北植物学报), 2002, 22(3): 602–610 (in Chinese with English abstract)



[27]Xia X-H(夏晓辉), Chen Y-F(陈耀锋), Li C-L(李春莲), Lü R-H(吕瑞华), Cao T-W(曹团武), Cao X(曹欣), Zhao Y-X(赵云祥). Effect of factors on GUS transient expression of wheat immature embryo transformated by particle bombardment. J Triticeae Crops (麦类作物学报), 2006, 26(2): 42–45 (in Chinese with English abstract)



[28]Ye X-G(叶兴国), Xu H-J(徐惠君), Du L-P(杜丽璞), Xin Z-Y(辛志勇). Study on the factors influencing the efficiency of wheat transformation. Sci Agric Sin (中国农业科学), 2001, 34(2): 128–132 (in Chinese with English abstract)



[29]Yu G-R(余桂荣), Yin J(尹钧), Guo T-C(郭天财), Niu J-S(牛吉山). Selection of the optimum genotype for immature embryo culture of wheat. J Triticeae Crops (麦类作物学报), 2003, 23(2) : 14–18 (in Chinese with English abstract)



[30]Zhang W(张玮), Wang J(王静), Ji J(纪军), Wang Z-G(王志国), An D-G(安调过), Zhang X-Q(张相岐), Zhang A-M(张爱民), Li J-M(李俊明). Development of “Kn199” new winter wheat variety and its cultivation in China. Chin J Eco-agric (中国生态农业学报), 2011, 19(5): 1212–1219 (in Chinese with English abstract)



[31]He Y, Jones H D, Chen S, Chen X M, Wang D W, Li K X, Wang D S, Xia L Q. Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv. Stewart) with improved efficiency. J Exp Bot, 2010, 61: 1567–1581



[32]Ortiz J P A, Reggiardo M I, Ravizzini R A, Altabe S G, Cervigni G D L, Spitteler M A, Morata M M, Elias F E, Vallejos R H. Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep, 1996, 15: 877–881



[33]Barro F, Rook L, Bekes F, Gras P, Tatham A S, Fido R, Lazzeri P A, Shewry P R, Barcelo P. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol, 1997, 15: 1295–1299



[34]Folling L, Olesen A. Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment. Plant Cell Rep, 2002, 20: 1098–1105



[35]Ingrain H M, Power J B, Lowe K C, Davey M R. Optimisation of procedures for microprojectile bombardment of microspore-derived embryos in wheat. Plan Cell Tiss Org Cult, 1999, 57: 207–210



[36]Takumi S, Shimada T. Variation in transformation frequencies among six common wheat cultivars through particle bombardment of scutellar tissues. Genes Genet Syst, 1997, 72: 63–69



[37]Breitler J C, Labeyrie A, Meynard D, Legavre T, Guiderdoni E. Efficient microprojectile bombardment mediated transformation of rice using gene cassettes. Theor Appl Genet, 2002, 104: 709–719

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!