欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (04): 693-703.doi: 10.3724/SP.J.1006.2013.00693

• 耕作栽培·生理生化 • 上一篇    下一篇

华北平原不同年代小麦品种旗叶光合特性对水分亏缺的响应

杨再洁,陈阜*,史磊刚,文新亚   

  1. 中国农业大学农学与生物技术学院 / 农业部农作制度重点开放实验室,北京 100193
  • 收稿日期:2012-07-14 修回日期:2012-11-16 出版日期:2013-04-12 网络出版日期:2013-01-04
  • 通讯作者: 陈阜, E-mail: chenfu@cau.edu.cn, Tel: 010-62733316
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2010CB951502)和农业部公益性行业(农业)科研专项(201103001)资助。

Responses of Photosynthetic Characteristics of Winter Wheat Cultivars Released in Different Decades to Water Deficit in North China Plain

YANG Zai-Jie,CHEN Fu*,SHI Lei-Gang,WEN Xin-Ya   

  1. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2012-07-14 Revised:2012-11-16 Published:2013-04-12 Published online:2013-01-04
  • Contact: 陈阜, E-mail: chenfu@cau.edu.cn, Tel: 010-62733316

摘要:

为探讨华北平原不同年代小麦品种对水分亏缺的反应及适应机制,选取20世纪50年代以来的代表品种碧蚂1号、济南2号、泰山1号、冀麦26、冀麦38和济麦22,比较其在灌溉和雨养条件下旗叶光合特性。结果表明,当前品种济麦22的产量显著高于上述5个品种,产量的提高伴随着净光合速率和气孔导度的显著提高,二者密切相关;在灌溉条件下,济麦22的产量比上述5个品种分别增加54.4%39.4%23.4%18.9%4.2%,花后平均净光合速率分别增加30.0%15.9%15.2%9.8%5.5%,气孔导度分别增加46.1%35.9%23.1%7.3%6.6%;在雨养条件下,济麦22的产量比这5个品种分别增加46.0%37.6%21.5%18.8%3.2%,花后平均净光合速率分别增加41.5%29.1%19.8%11.2%6.7%,气孔导度分别增加68.4%48.7%30.6%10.7%10.6%。与灌溉条件下相比,雨养条件下不同年代小麦品种旗叶净光合速率和气孔导度均表现为降低的趋势,但济麦22的降低幅度低于上述5个品种,表明当前品种的旗叶光合特性对水分亏缺的适应性较强。雨养条件下,碧蚂1号、济南2号、泰山1号、冀麦26、冀麦38和济麦22的产量分别比灌溉条件下降低6.6%10.5%10.3%11.6%10.8% 11.7%,济麦22的下降幅度最大,表明当前品种的产量对水分亏缺的敏感性较强,在水分充足的条件下增产潜力较高。

关键词: 华北平原, 冬小麦, 品种演替, 光合特性, 水分亏缺

Abstract:

In order to understand the reaction and adaption mechanism to water deficit in winter wheat (Triticum aestivum L.) planted in North China Plain, six cultivars (Bima 1 released in the 1950s, Jinan 2 released in the 1960s, Taishan 1 released in the 1970s, Jimai 26 released in the 1980s, Jimai 38 released in the 1990s, and Jimai 22 released in the 2000s) were grown under both irrigated and rain-fed conditions in two successive growing seasons from 2010 to 2012. The photosynthetic characteristics of flag leaf after anthesis and grain yields were compared under two water conditions. The yield of Jimai 22 was significantly higher than that of other cultivars. The increase of yield was along with the significant improvements of photosynthetic rate (Pn) and stomatal conductance (Gs). Under irrigated condition, Jimai 22 showed increases of 54.4%, 39.4%, 23.4%, 18.9%, and 4.2% in yield, 30.0%, 15.9%, 15.2%, 9.8%, and 5.5% in Pn, and 46.1%, 35.9%, 23.1%, 7.3%, and 6.6% in Gs compared with the previous cultivars Bima 1, Jinan 2, Taishan 1, Jimai 26, and Jimai 38, respectively. Under rain-fed condition, Jimai 22 showed increases of 46.0%, 37.6%, 21.5%, 18.8%, and 3.2% in yield, 41.5%, 29.1%, 19.8%, 11.2%, and 6.7% in Pn, and 68.4%, 48.7%, 30.6%, 10.7%, and 10.6% in Gs compared with the previous cultivars, respectively. Under rain-fed condition, the Pn and Gs of all cultivars were lower than those under irrigated condition, and these of Jimai 22 showed the least reduction, indicating that Jimai 22 has higher photosynthetic adaptation to water deficiency. However, compared with the irrigated treatment, the rain-fed treatment showed 6.6–11.7% of yield decrease in different cultivars, with the largest reduction percentage in Jimai 22. Therefore, we concluded that the current wheat cultivars in North China Plain have high-yield potential under water-sufficient condition, but they are sensitive to water deficiency, with a relatively strong photosynthetic adaptation to water deficiency.

Key words: North China Plain, Winter wheat, Cultivar evolvement, Photosynthetic characteristics, Water deficiency

[1]Yang S. The ten agricultural regions of China. In Xu G, Peel L J, eds. The Agriculture of China. New York: Oxford University Press, 1991. pp 108–143



[2]Xiao S-H(肖世和). Tend of wheat breeding and food security in China. Sci Tech Rev (科技导报), 2006, (4): 5–8 (in Chinese with English abstract)



[3]Jiang G M, Sun J Z, Liu H Q, Qu C M, Wang K J, Guo R J, Bai K Z, Gao L M, Kuang T Y. Changes in the rate of photosynthesis accompanying the yield increase in wheat cultivars released in the past 50 years. J Plant Res, 2003, 116: 347–354



[4]Fischer R A , Rees D , Sayre K D , Lu Z M , Candon A G , Saavedra A L. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci, 1998, 38: 1467–1475



[5]Ren H-Z(任鸿遵), Li L(李林). Diagnosis of water supply and demand in the North China Plain. Geograph Res (地理研究), 2000, 19(3): 316–323 (in Chinese with English abstract)



[6]Patrizia R, Stefano P, Carmela G, Giovanni M, Carla P. Drought stress response in wheat physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ, 2006, 29: 2143–2152



[7]Hu M-Y(胡梦芸), Zhang Z-B(张正斌), Xu P(徐萍), Dong B-D(董宝娣), Li W-Q(李魏强), Li J-J(李景娟). Relationship of water use efficiency with photoassimilate accumulation and transport in wheat under deficit irrigation. Acta Agron Sin (作物学报), 2007, 33(11): 1884–1891 (in Chinese with English abstract)



[8]Xue Q W, Zhu Z X, Musick J T, Stewart B A, Dusek D A. Physiological mechanisms contri buting to the increased water- use efficiency in winter wheat under deficit irrigation. J Plant Physiol, 2006, 163: 154–164



[9]Jiang D(姜东), Xie Z-J(谢祝捷), Cao W-X(曹卫星), Dai T-B(戴廷波), Jing Q(荆奇). Effects of post-anthesis drought and water-logging on photosynthetic characteristics, assimilates transportation in winter wheat. Acta Agron Sin (作物学报), 2004, 30(2): 175–182 (in Chinese with English abstract)



[10]Tambussi E A, Nogués S, Araus J L. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 2005, 221: 446–458



[11]Subrahmanyam D, Subash N, Haris A, Sikka A K. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica, 2006, 44: 125–129



[12]Zhao H-M(赵红梅), Guo C-J(郭程瑾), Duan W-W(段巍巍), Qi Y-Q(齐永清), Wang X-Y(王笑颖), Li-Y-M(李雁鸣), Xiao K(肖凯). Studies on evaluation indices for drought resistance capacity in wheat varieties. J Plant Genet Resour (植物遗传资源学报), 2007, 8(1): 76–81 (in Chinese with English abstract)



[13]Xu Y-Y(许毓英). The main crop strains resources, potential and regional development countermeasures. Resour Sci (资源科学), 1991, 21(1): 9-14 (in Chinese with English abstract)



[14]Wang S-H(王士红), Jing Q(荆奇), Dai T-B(戴廷波), Jiang D(姜东), Cao W-X(曹卫星). Evolution characteristics of flag leaf photosynthesis and grain yield of wheat cultivars bred in different years. Chin J Appl Ecol (应用生态学报), 2008, 19(6): 1255–1260 (in Chinese with English abstract)



[15]Zhang X Y, Chen S Y, Sun H Y, Wang Y M, Shao L W. Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agric Water Manag, 2010, 97: 1117–1125



[16]Richards R A. Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot, 2000, 51: 447–458



[17]Lan J-H(兰进好), Zhang B-S(张宝石), Zhou H-F(周鸿飞), Liu Y-X(刘源霞), Li H-L(李洪利). Comparison on photosynthetic rate and interrelated characteristics of winter wheat varieties from different eras. J Shenyang Agric Univ (沈阳农业大学学报), 2003, 34(1): 12–15 (in Chinese with English abstract)



[18]Cao H M. Source-sink manipulation effects on post anthesis photosynthesis and grain setting on spike in winter wheat. Photosynthetica , 1998, 35: 453–459



[19]Dunin F X, Meyer W S, Wong S C, Reyenga W. Seasonal changes in water use and carbon assimilation of irrigated wheat. Agric For Meteorol, 1989, 45: 231–250



[20]Sayre K D, Rajeram S, Fischer R A. Yield potential progress in short bread wheat in north-west Mexico. Crop Sci, 1997, 37: 36–42



[21]Ahmadi A, Siosemardeh A. Investigation on the physiological basis of grain yield and drought resistance in wheat: leaf photosynthetic rate, stomatal conductance and non-stomatal limitations. Int J Agric Boil, 2005, 7: 807–811



[22]Chen X(陈旭), Hao M-D(郝明德), Xu J-J(许晶晶), Zhu Y-L(朱亚莉). Effect of drought stress on photosynthesis characteristics in flag leaf of wheat cultivars in different years in the central Shaanxi Plain. Agric Res Arid Areas (干旱地区农业研究), 2012, 30(1): 159–169 (in Chinese with English abstract)



[23]Shang-Guan Z-P(上官周平). Physiological mechanism of highly efficiency use of limited water supply by winter wheat. Chin J Appl Ecol (应用生态学报), 1999, 10(1): 567–569 (in Chinese with English abstract)



[24]Yu Z-W(于振文). Crop Cultivation for Species (作物栽培学各论). Beijing: China Agriculture Press, 2003. p 42
[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[5] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[6] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[7] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[8] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[9] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[10] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[11] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[12] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[13] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[14] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[15] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!