欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1514-1519.doi: 10.3724/SP.J.1006.2013.01514

• 研究简报 • 上一篇    

水分亏缺对小麦穗部光合特性及花前14C-同化物分配的影响

张磊,吕金印*,贾少磊   

  1. 西北农林科技大学生命科学学院,陕西杨凌 712100
  • 收稿日期:2013-01-31 修回日期:2013-04-22 出版日期:2013-08-12 网络出版日期:2013-05-20
  • 通讯作者: 吕金印, E-mail: jinyinlu@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(31271624)资助。

Photosynthetic Characteristics of Spike and Distribution of 14C-Assimilates Accumulated Before Anthesis in Wheat under Water Deficit Condition

ZHANG Lei,LÜ Jin-Yin*,JIA Shao-Lei   

  1. College of Life Sciences, Northwest A&F University, Yangling 712100, China
  • Received:2013-01-31 Revised:2013-04-22 Published:2013-08-12 Published online:2013-05-20
  • Contact: 吕金印, E-mail: jinyinlu@163.com

摘要:

为明确干旱胁迫对小麦穗部花前同化物合成和转运的影响,选用旱地品种西农928和水分敏感品种郑引1号,通过14CO2标记技术研究了水分亏缺下穗部光合特性及穗部花前同化物的转运和分配规律。水分亏缺条件下,西农928灌浆前期、中期的穗部净光合速率、颖壳中叶绿素含量及可溶性总糖含量略有下降,而郑引1号显著下降。成熟期西农928的水分利用效率上升1.7% (P>0.05),籽粒中14C-同化物分配率略降3.2% (P>0.05);而郑引1号水分利用效率下降16.9% (P<0.05),籽粒中花前14C-同化物分配率上升7.8% (P<0.05)。试验表明,水分亏缺对西农928穗部光合的影响有限; 适度水分亏缺促进了水分敏感品种郑引1号颖壳及内外稃中花前14C-同化物向籽粒的转运, 相对提高了其穗部花前光合同化物对籽粒灌浆的贡献率。

关键词: 小麦, 水分亏缺, 穗部光合特性, 干物质转运, 14C-标记

Abstract:

Photosynthate in spike has an important contribution to grain yield in wheat. Two wheat cultivars, Xinong 928 (drought resistant) and Zhengyin 1 (drought sensitive), were labeled with 14CO2 seven days before anthesis to monitor the drought-responses in photosynthetic characteristics and dry matter translocation of spike during grain-filling period. Under water-deficit condition, the net photosynthetic rate of spike and contents of chlorophyll and sugar in glume at early- and mid-filling stage had slight declines in Xinong 928 but significant decreases in Zhengyin 1. At maturity stage, Xinong 928 showed no significant variations in water use efficiency and 14C-assimilate ratio in grain under water-deficit condition; whereas, Zhengyin 1 had a significant decrease (16.9%, P < 0.05) in water use efficiency and a significant increase (7.8%, P < 0.05) in 14C-assimilate ratio in grain. These results suggested that water deficit had limited influences on the photosynthesis of spike in the drought-resistant cultivar Xinong 928; however, moderate drought stress stimulated the translocation of dry matter from glume, palea, and lemma into grain in the drought-sensitive cultivar Zhengyin 1, which resulted in the increase of 14C-assimilate ratio in spike before anthesis.

Key words: Wheat, Water deficit, Photosynthetic characteristics of spike, Biomass translocation, 14C-labelling

[1]Wang Z-Q(王志强), Liang W-W(梁威威), Fan W-W(范雯雯), Lin T-B(林同保). Studies on compensation effects of rewatering on winter wheat suffering from droughts during spring under different soil fertility conditions. Sci Agric Sin (中国农业科学), 2011, 44(8): 1628–1636 (in Chinese with English abstract)



[2]Zhang Y-P(张永平), Zhang Y-H(张英华), Wang Z-M(王志敏). Photosynthetic diurnal variation characteristics of leaf and non-leaf organs in winter wheat under different irrigation regimes. Acta Ecol Sin (生态学报), 2011, 31(5): 1312–1322 (in Chinese with English abstract)



[3]Carr D J, Wardlaw I F. The supply of photosynthetic assimilates to the grain from the flag leaf and ear of wheat. Aust J Biol Sci, 1965, 18: 711–719



[4]Bort J, Febrero A, Amaro T, Araus J L. Role of awns in ear water-use efficiency and grain weight in barley. Agronomie, 1994, 2: 133–139



[5]Sánchez-Díaz M, García J L, Antolín M C, Araus J L. Effects of soil drought and atmospheric humidity on yield, gas exchange and stable carbon composition of barley. Photosynthetica, 2002, 40: 415–421



[6]Zhang Y P, Zhang Y H, Wang Z M., Wang Z J. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. Field Crops Res, 2011, 123: 187–195



[7]Wardlaw I F. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Ann Bot, 2002, 90: 469–476



[8]Tambussi, E A, Nogués S, Araus J L. Ear of durumwheat under water stress: water relations and photosynthetic metabolism. Planta, 2005, 221: 446–458



[9]Tambussi, E A, Bort J, Guiamet J J, Nogués S, Araus J L. The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci, 2007, 26: 1–16



[10]Li Z-X(李朝霞), Zhao S-J(赵世杰), Meng Q-W(孟庆伟), Zou Q(邹琦), Tian J-C(田纪春). Photosynthetic characteristics in non-leaf organs of winter wheat cultivars differing in grain-leaf ratio. Acta Agron Sin (作物学报), 2004, 30(5): 419–426 (in Chinese with English abstract)



[11]Kriedemann, P. The photosynthetic activity of the wheat ear. Ann Bot, 1966, 30: 349–363



[12]Bort J, Brown H R, Araus J L. Refixation of respiratory CO2 in the ears of C3 cereals. J Exp Bot, 1996, 47: 1567–1575



[13]Gebbing T, Schnyder H. 13C labelling kinetics of sucrose in glumes indicates significant refixation of respiratory CO2 in the wheat ear. Aust J Plant Physiol, 2001, 28: 1047–1053



[14]Wang Z-M(王志敏), Zhang Y-H(张英华), Zhang Y-P(张永平), Wu Y-C(吴永成). Review on photosynthetic performance of ear organs in Triticeae crops. J Triticeae Crops (麦类作物学报), 2004, 24(4): 136–139 (in Chinese with English abstract)



[15]Zhang Y-P(张永平), Wang Z-M(王志敏), Zhang Y-H(张英华), Shi H-B(史海滨). Photosynthetic performance of wheat varieties with different grain-leaf ratio under limited irrigation. J Triticeae Crops (麦类作物学报), 2009, 29(5): 859–866 (in Chinese with English abstract)



[16]Zhang Y-P(张永平), Wang Z-M(王志敏), Wang P(王璞), Zhao M(赵明). Canopy photosynthetic characteristics of population of winter wheat in water-saving and high-yielding cultivation. Sci Agric Sin (中国农业科学), 2003, 36(10): 1143–1149 (in Chinese with English abstract)



[17]Maydup M L, Antonietta M, Guiamet J J, Graciano C, López J R, Tambussi E A. The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L). Field Crop Res, 2010, 119: 48–58



[18]Gao J-F(高俊凤). Experimental Guidance for Plant Physiology (植物生理学实验指导). Beijing: Higher Education Press, 2006. pp 74–77 (in Chinese)



[19]Xu X-L(徐晓玲), Wang Z-M(王志敏). Effect of heat stress during grain filling on photosynthetic characteristics of different green organs in winter wheat. Acta Bot Sin (植物学报), 2001, 43(6): 571–577 (in Chinese with English abstract)



[20]Morgan J M. Osmotic adjustment in the earlet and leaves of wheat. J Exp Bot, 1980, 31: 655–665



[21]Govindjee. A role for a light harvesting antenna complex of photosystem II in photoprotection. Plant Cell, 2002, 14: 1663–1667



[22]Pauly K. The photosynthetic activity of the wheat ear. Ann Bot, 1996, 30: 349–303



[23]Wei A-L(魏爱丽), Xing Y(邢勇), Zhang X-B(张小冰), Song M-L(宋敏丽). The response of ear photosynthesis to drought stress in wheat. J Taiyuan Teachers College (Nat Sci Edn) (太原师范学报?自然科学版), 2006, 4(4): 78–80 (in Chinese with English abstract)



[24]Wang Z(王忠), Gao Y-Z(高煜珠). The photosynthetic characteristics of wheat ear. Acta Bot Sin (植物学报), 1991, 33(4): 286–291 (in Chinese with English abstract)



[25]Wang W(王维), Zhang J-H(张建华), Yang J-C(杨建昌), Zhu Q-S(朱庆森). Effects of controlled soil drought on remobilization of stem-stored carbohydrate and grain filling of wheat with unfavorably-delayed senescence. Acta Agron Sin (作物学报), 2004, 30(10): 1019–1025 (in Chinese with English abstract)



[26]Araus J L, Brown R H, Febrero A. Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell Environ, 1993, 16: 383–392



[27]Johnson R, Moss D N. Effct of water stress on 14CO2 fixation and translocation in wheat during grain filling. Crop Sci, 1976, 16: 697–701

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!