作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1775-1782.doi: 10.3724/SP.J.1006.2013.01775
杨在东,马信,吴世文,王宏伟,孙鑫,冀宪领,李安飞,孔令让*
YANG Zai-Dong,MA Xin,WU Shi-Wen,WANG Hong-Wei,SU Xin,JI Xian-Ling,LI An-Fei,KONG Ling-Rang*
摘要:
AtNPR1是拟南芥系统获得性抗病反应中的关键基因,对拟南芥的广谱抗性起重要调控作用。从赤霉菌诱导的小麦抗、感赤霉病近等基因系RNA差异表达谱中获得3个与AtNPR1类似的EST片段,据此检索相应序列信息并设计引物,采用RT-PCR方法从小麦中克隆得到3个cDNA全长序列,分别命名为TaNPR1、TaNPR2和TaNPR3,其开放阅读框分别编码580、607和601个氨基酸残基。序列分析表明,这3个小麦NPR1-like蛋白都含有保守的BTB/POZ、ANK和NPR1_like_C结构域及功能氨基酸,但仅TaNPR1具有2个对NPR1寡聚体形成十分必要的保守半胱氨酸残基。蛋白质聚类分析表明,TaNPR1与TaNPR2和TaNPR3的同源性均较低,其中TaNPR1与NPR1蛋白聚为一类,而TaNPR2和TaNPR3均与NPR1同源蛋白聚为一类。荧光定量PCR分析结果显示,TaNPR1、TaNPR2和TaNPR3基因都可被植物抗病相关信号分子水杨酸和茉莉酸甲酯诱导。与感病材料Apogee相比,抗病近等基因系Apogee73S2中TaNPR1和TaNPR3能够更早地响应赤霉菌的诱导并显著上调表达;而TaNPR2在感、抗材料中对赤霉菌侵染的响应都较为缓慢且变化不明显。这些结果表明,TaNPR1和TaNPR3可能在小麦对赤霉菌的防御反应中起重要作用。
[1]Durrant W E, Dong X N. Systemic acquired resistance. Annu Rev Phytopathol, 2004, 42: 185–209[2]Dong X N. NPR1, all things considered. Curr Opin Plant Biol, 2004, 7: 547–552[3]Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 1993, 261: 754–756[4]Mukhtar M S, Nishimura M T, Dangl J. NPR1 in Plant Defense: It’s not over’til it’s turned over. Cell, 2009, 137: 804–806[5]Cao H, Glazebrook J, Clarke J D, Volko S, Dong X N. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 88: 57–63[6]Aravind L, Koonin E V.Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel telramefization domain. J Mol Biol, 1999, 285: 1353–1361[7]Kinkema M, Fan W H, Dong X N. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell, 2000, 12: 2339–2350[8]Mou Z L, Fan W H, Dong X N. Inducers of plant systemic acquired resistance regulate NPR1 function through Redox changes. Cell, 2003, 113: 935–944[9]Pieterse C M J, Van Wees S C M, Van Pelt J A, Knoester M, Laan R, Gerrits H, Weisbeek P J, d Van Loon L C. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 1998, 10: 1571–1580[10]Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact, 2005, 18: 511–520[11]Zhang L, Zhang Y, Shi J, Zhang L, Guo X Q. Molecular cloning and characterization of a novel NPR1 gene from Nicotiana glutinosa. Acta Phytopathol Sin, 2009, 39: 482–490[12]Tang Y-M(唐益苗), Zhang Z-Y(张增艳), Xin Z-Y(辛志勇). Isolation and characterization of NPR1 homolog gene TiNH1 in Thinopyrum intermedium. Sci Agric Sin (中国农业科学), 2007, 40(6): 1101–1107 (in Chinese with English abstract)[13]Zhang Y, Wang X, Cheng C, Gao Q, Liu J, Guo X. Molecular cloning and characterization of GhNPR1, a gene implicated in pathogen responses from cotton (Gossypium hirsutum L.). Biosci Rep, 2008, 28: 7–14[14]Malnoy M, Jin Q, Borejsza-Wysocka E E, He S Y, Aldwinckle H S. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant-Microbe Interact, 2007, 20: 1568–1580[15]Chern M S, Fitzgerald H A, Yadav R C, Canlas P E, Dong X N, Ronald P C. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J, 2001, 27: 101–113[16]Cao H, Li X, Dong X N. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA, 1998, 95: 6531–6536[17]Desjardins A E, Hohn T M. Mycotoxins in plant pathogenesis. Mol Plant-Microbe Interact, 1997, 10: 147–152[18]Makandar R, Essig J S, Schapaugh M A, Trick H N, Shah J. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant-Microbe Interact, 2006, 19: 123–129[19]Fu Z Q, Yan S P, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel S H, Tada Y, Zheng N, Dong X N. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 2012, 486: 228–233[20]Jia H Y, Cho S, Muehlbauer G J. Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blight resistant and susceptible alleles. Mol Plant-Microbe Interact, 2009, 22: 1366–1378[21]Glazebrook J, Rogers E E, Ausubel F M. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics, 1996, 143: 973–982[22]Wastemack C, Parthier B. Jasmonate signaled plant gene expression. Trends Plant Sci, 1997, 2: 302–307[23]Zhang Y, Fan W H, Kinkema M, LI X, Dong X N. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA, 1999, 96: 6523–6528[24]Yuan Y X, Zhong S H, Li Q, Zhu Z R, Lou Y G, Wang L Y, Wang J J, Wang M Y, Li Q L, Yang D L, He Z H. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J, 2007, 5: 313–324[25]Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005,43: 205–227 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|