作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2162-2170.doi: 10.3724/SP.J.1006.2013.02162
谭秦亮1,李长宁1,2,杨丽涛1,2,*,李杨瑞1,2,*
TAN Qin-Liang1,LI Chang-Ning1,2,YANG Li-Tao1,2,*,LI Yang-Rui1,2,*
摘要:
蔗糖非酵解型蛋白激酶(SnRK)是植物体内ABA信号转导途径的关键调控酶, 在植物的抗逆境生长过程中发挥着重要的作用。本研究通过RT-PCR和RACE-PCR技术克隆出编码甘蔗SnRK2蛋白的基因SoSnRK2.1。该基因cDNA序列全长为1385 bp, 包含一个1002 bp的开放阅读框(ORF)。根据氨基酸序列预测SoSnRK2.1基因编码333个氨基酸残基, 与其他高等植物中相关蛋白的氨基酸具有高度的相似性, 尤其是与禾本科的玉米和水稻。构建该基因的原核表达载体pET-SoSnRK2.1, 在IPTG诱导下可得到38 kD 左右的蛋白, 与理论值一致。实时荧光定量PCR分析表明, SoSnRK2.1基因在ABA、干旱(PEG)+ABA、干旱(PEG)、NaCl、低温(4℃)和H2O2外源胁迫下均呈诱导表达的趋势。推测该基因参与调控干旱、高盐和低温等胁迫过程, 在甘蔗抗逆境胁迫中起重要作用。
[1]Pei L-L(裴丽丽), Guo Y-H(郭玉华), Xu Z-S(徐兆师), Li L-C(李连城), Chen M(陈明), Ma Y-Z(马有志). Research progress on stress-related protein kinases in plants. Acta Bot Boreali-Occident Sin (西北植物学报), 2012, 32(5): 1052–1061 (in Chinese with English abstract)[2]Coello P, Hey S J, Halford N G. The sucrose non-fermenting-1-related(SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot, 2011, 62: 883–893[3]Li L(李琳), Liu S-K(柳参奎). The SnRK protein kinase family and the Function of SnRK2 protein kinase. Mol Plant Breed (分子植物育种), 2010, 8(3): 547–555 (in Chinese with English abstract)[4]Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker J R, Shinozaki K. ABA-activated SnRK2 protein kinase is required for dehydration stress signling in Arabidopsis. Plant Cell Physiol, 2002, 43: 1473–1483[5]Hrabak E M, Chan C W M, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003, 132: 666–680 [6]Raghavendra A S, Gonugunta V K, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci, 2010, 15: 395–401[7]Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid:emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61: 651–679[8]Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106, 17588–17593[9]Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J, 2010, 61, 672–685[10]Sirichandra C, Davanture M, Turk B E, Zivy M, Valot B, Leung J, Merlot S. The Arabidopsis ABA activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 1433 binding site involved in its turnover. PLoS ONE, 2010, 5, e13935[11]Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S Y, Cutler S R, Sheen J, Rodriguez P L, Zhu J K. In vitro reconstitution of an abscisic acid signaling pathway. Nature, 2009, 462, 660–664[12]Fujii H, Verslues P E, Zhu J K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci USA, 2011, 108: 1717–1722[13]Zhang H Y, Mao X G, Zhang J N, Chang X P, Wang C S, Jing R L. Genetic diversity analysis of abiotic stress response gene TaSnRK2.7-A in common wheat. Genetica, 2011, 139: 743–753[14]Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, and Hattori T. Abscisic acid-activated SnRK2 protein kinases function in the gene-regulation path way of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J, 2005, 44: 939–949[15]Li J-X, Wang X-Q, Watson M B, Assmann S M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 2000, 287: 300–303[16]Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 2002, 14: 3089–3099[17]Soon F F, Ng L M, Zhou X E, West G M, Kovach A, Tan MHE, Suino-Powell K M, He Y Z, Xu Y, Chalmers M J, Brunzelle J S, Zhang H M, Yang H Y, Jiang H L, Li J, Yong E L, Cutler S, Zhu J K, Griffin P R, Melcher K, Xu H E. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science, 2012, 335: 85–88[18]Zheng Z F, Xu X P, Crosley R A, Greenwalt S A, Sun Y, Blakeslee B, Wang L, Ni W, Sopko M S, Yao C, Yau K, Burton S, Zhuang M, McCaskill D G, Gachotte D, Thompson M, Greene T W. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol, 2010, 153: 99–113[19]Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C, a SNF1-related protein kinase improves drought tolerance by controlling stress responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2004, 101: 17306–17311[20]Zhang H, Mao X, Wang C, Jing R. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt,and low temperature in Arabidopsis. PloS ONE, 2010, 5(12): e16041[21]Monks D E, Aghoram K, Courtney P D, DeWald D B, Dewey R E. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell, 2001, 13: 1205–1219[22]Yoon H W, Kim M C, Shin P G, Kin J S, Kin C Y, Lee S Y, Hwang I, Bank J D, Hong J C, Han C, Cho M J. Differential expression of two functional serine/threo-nine protein kinases from soybean that have an unusual acidic domain at the carboxy terminus. Mol Gen Genet, 1997, 255: 359–371 [23]Iskandar H M, Simpson R S, Casu R E, Bonnett G D, Maclean D J, Manners J M. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep, 2004, 22: 325–337 [24]Miyazono K I, Miyakawa T, Sawano Y, Kubota K, Kang H J, Asano A, Miyauchi Y, Takahashi M, Zhi Y H, Fujita Y, Yoshida T, Kodaira K S, Yamaguchi-Shinozaki K, Tanokura M. Structural basis of abscisic acid signaling. Nature, 2009, 462: 609-614[25]Nishimura N, Hitomi K, Arvai A S, Rambo R P, Hitomi C, Cutler S R, Schroeder J I, Getzoff E D. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science, 2009, 326: 1373–1379[26]Santiago J, Dupeux F, Betz K, Antoni R, Gonzalez Guzman M, Rodriguez L, Márquez J A, Rodriguez P L. Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Science, 2012, 182: 3–11[27]Yin P, Fan H, Hao Q, Yuan X Q, Wu D, Pang Y X, Yan C Y, Li W Q, Wang J W, Yan N. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol, 2009, 16: 1230–1236[28]Raghavendra A S, Gonugunta V K, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci, 2010, 15: 395–401[29]Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61: 651–679[30]Kagaya Y, Hobo T, Murata M, Ban A, Hattori T. Abscisic acid-induced transcription is mediated by phospho-rylation of an abscisic acid response element binding factor, TRAB1. Plant Cell, 2002, 14: 3177–3189[31]Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Abscisic acid-dependent multisite phosphorylation regulates the ac-tivity of a transcription activator AREB1, Proc Natl Aca Sci USA, 2006, 103: 1988–1993[32]Johnson G L, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002, 298: 1911–1912[33]Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J, 2005, 44: 939–949[34]Li L B(李利斌), LiuK C(刘开昌), Li X G(李现刚). Identification and characteristic analysis of three novel SnRK2 genes of maize. Shandong Agric Sci (山东农业科学), 2009, (12): 7–11 (in Chinese with English abstract)[35]Anderberg R J, Walker-Simmons M K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA, 1992, 89: 10183–10187[36]Li J X, Wang X Q, Watson M B, Assmann S M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 2000, 287: 300–303[37]Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker J R. Shinozaki K.ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol, 2002, 43: 1473–1483 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[3] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[4] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[5] | 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341. |
[6] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[7] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[8] | 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530. |
[9] | 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539. |
[10] | 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296. |
[11] | 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893. |
[12] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[13] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[14] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[15] | 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382. |
|