作物学报 ›› 2014, Vol. 40 ›› Issue (02): 253-263.doi: 10.3724/SP.J.1006.2014.00253
牛俊奇1,2,王爱勤1,2,黄静丽1,2,杨丽涛1,2,3*,李杨瑞2,3,4*
NIU Jun-Qi1,2,HUANG Jing-Li1,2,WANG Ai-Qing1,2,YANG Li-Tao1,2,3,*,LI Yang-Rui2,3,4,*
摘要:
中性/碱性转化酶(Alkaline/Neutral Invertase)能不可逆地催化蔗糖分解为葡萄糖和果糖, 在植物生长发育中起重要作用。本研究采用RT-PCR和RACE技术从甘蔗品种GT28心叶中克隆到甘蔗中性/碱性转化酶基因全长cDNA序列, 基因命名为SoNIN1。该基因全长2289 bp (GenBank登录号为JX109944), 开放阅读框为1812 bp, 编码603个氨基酸, 相对分子量为67.79 kD, 等电点为6.41。具有中性/碱性转化酶保守结构域, N-端不含跨膜结构和信号肽。其编码氨基酸序列与玉米、水稻和黑麦草的亲缘关系较近, 属于同一进化分支。利用染色体步移技术克隆到SoNIN1基因5¢侧翼启动子序列, 长度为1174 bp (GenBank登录号为KC854419)。启动子序列含有多个CAAT-box和TATA-box等基本作用元件, 参与分生组织特异性激活, 参与干旱诱导的MYB结合位点, 脱落酸、茉莉酸甲酯和赤霉素响应等作用元件。利用实时荧光定量PCR技术, 在生理成熟期甘蔗茎、叶、花序和芽中均能检测到SoNIN1的表达, 其表达量在叶中最高, 芽中次之, 而在+1节间最低。苗期根和叶中SoNIN1基因都受PEG和NaCl诱导表达。
[1]蓝基贤, 唐朝荣. 高等植物中转化酶生理生化特性的研究进展. 热带作物学报, 2012, 33: 1702–1707Lan J X, Tang C R. Advance on the studies of physiological and biochemical characteristics of invertase in higher plants. Chin J Trop Crops, 2012, 33: 1702–1707 (in Chinese with English abstract)[2]李肖蕖, 王建设, 张根发. 植物蔗糖转化酶及其基因表达调控研究进展. 园艺学报, 2008, 35: 1384–1392Li X Q, Wang J S, Zhang G F. Advanced in plant invertase and regulation of gene expression. Acta Hortic Sin, 2008, 35: 1384–1392 (in Chinese with English abstract)[3]Sturm A. Invertases: primary structures, functions and roles in plant development and sucrose partitioning. Plant Physiol, 1999, 121: 1–7[4]Zhu Y J, Albert H H, Moore P H. Differential expression of soluble acid invertase genes in the shoots of high-sucrose and low-sucrose species of Saccharum and their hybrids. Aust J Plant Physiol, 2000, 27: 193–199[5]郭家文,刘少春, 张跃彬. 李文凤成熟期不同基因型甘蔗糖分和叶片酶活性的变化. 中国糖料, 2006, (3): 16–21Guo J W, Liu S C, Zhang Y B, Li W F. Studies on sucrose content and foliar enzyme activity of sugarcane during mature period. Sugar Crops China, 2006, (3): 16–21 (in Chinese with English abstract)[6]Pan Y Q, Lou H L, Li Y R. Soluble acid invertase and sucrose phosphate synthase: key enzymes in regulating sucrose accumulation in sugarcane stalk. Sugar Technol, 2009, 11: 28–33[7]Sachdeva M, Mann A P S, Batta S K. Sucrose metabolism and expression enzyme activities in low and high storing sugarcane genotypes of key sucrose. Sugar Technol, 2003, 5: 265–271[8]Barratt D H P, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson R, Maule A J, Smith A M. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA, 2009, 106: 13124–13129[9]Gallagher J A, Pollock C J. Isolation and characterization of a cDNA clone from Lolium temulentum L. encoding for a sucrose hydrolytic enzyme which shows alkaline/neutral invertase activity. J Exp Bot, 1998, 49: 789–795[10]Vargas W A, Pontis H G, Salerno G L. Differential expression of alkaline and neutral invertases in response to environmental stresses: characterization of an alkaline isoform as a stress-response enzyme in wheat leaves. Planta, 2007, 226: 1535–1545[11]刘术金, 李旖璠, 唐朝荣. 橡胶树2个胶乳转化酶基因的原核表达. 热带作物学报, 2010, 31: 1091–1097Liu S J, Li Y F, Tang C R. Construction of prokaryotic expression vectors for two invertases from latex and optimization of their expression conditions. Chin J Trop Crops, 2010, 31: 1091–1097 (in Chinese with English abstract)[12]Bocock P N, Morse A M, Dervinis C, Davis J M. Evolution and diversity of invertase genes in Populus trichocarpa. Planta, 2008, 227: 565–576[13]姜立智, 林长发, 梁宗锁, 卫春, 杨金水. 水稻蔗糖转化酶基因的克隆及其功能的初步探讨. 复旦大学学报, 2003, 42: 588–592Jiang L Z, Lin C F, Liang Z S, Wei C, Yang J S. Cloning and characterization of a cDNA encoding putative neutral/ alkaline invertase from rice (Oryza sativa L.). J Fudan Univ, 2003, 42: 588–592 (in Chinese with English abstract)[14]Murayama S J, Handa H. Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta, 2007, 225: 1193–1203[15]Xiang L, Roy L K, Bolouri-Moghaddam M R, Vanhaecke M, Lammens W, Rolland F, Ende W V D. Exploring the neutral invertase–oxidative stress defense connection in Arabidopsis thaliana. J Exp Bot, 2011, 62: 3849–3862[16]Szarka A, Horemans N, Passarella S, Tarcsay Á, Örsi F, Salgó A, Bánhegyi G. Demonstration of an intramitochondrial invertase activity and the corresponding sugar transporters of the inner mitochondrial membrane in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Planta, 2008, 228: 765–775[17]Vargas W A, Pontis H G, Salerno G. New insights on sucrose metabolism: evidence for an active A/N-Inv in chloroplasts uncovers a novel component of the intracellular carbon trafficking. Planta, 2008, 227: 795–807[18]Jia L Q, Zhang B T, Mao C Z, Li J H, Wu Y R, Wu P, Wu Z C. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell evelopment and reproductivity in rice (Oryza sativa L.). Planta, 2008, 228: 51–59[19]Yao S G, Mushika J, Taketa S, Ichii M, Masahiko Ichii. The short-root mutation srt5 de?nes a sugar-mediated root growth in rice (Oryza sativa L.). Plant Sci, 2004, 167: 49–54[20]Yao S G, Kodama R, Wang H, Ichii M, Taketa S, Yoshida H. Analysis of the rice SHORT-ROOT5 gene revealed functional diversi?cation of plant neutral/alkaline invertase family. Plant Sci, 2009, 176: 627–634[21]Welham T, Pike J, Horst1 I, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske M, Wang T L. A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus. J Exp Bot, 2009, 60: 3353–3365[22]Qi X P, Wu Z C, Li J H, Mo X R, Wu S H, Chu J, Wu P. AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Mol Biol, 2007, 64: 575–587[23]刘海斌, 何红, 邓展云, 张革民, 李杨瑞, 方锋学, 贤武, 刘晓静, 方位宽, 闭少玲, 容凤玉, 唐红琴. 特高糖抗寒甘蔗新品种桂糖28的选育. 中国糖料, 2010, (1): 13–15Liu H B, He H, Deng Z Y, Zhang G M, Li Y R, Fang F X, Xian W, Liu X J, Fang W K, Bi S L, Rong F Y, Tang H Q. Breeding of new sugarcane variety Guitang 28. Sugar Crops China, 2010, (1): 13–15 (in Chinese with English abstract) [24]应雄美, 蔡青, 毕艳, 刘新龙, 马丽, 毛钧, 陆鑫. 两种不同甘蔗基因组DNA提取方法的比较. 中国糖料, 2009, (4): 22–23Ying X M, Cai Q, Bi Y, Liu X L, Ma L, Mao J, Lu X. Comparison between two sugarcane genome DNA extraction method. Sugar Crops China, 2009, (4): 22–23 (in Chinese with English abstract)[25]阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量PCR分析中内参基因的选择. 热带作物学报, 2009, 30: 274–278Que Y X, Xu L P, Xu J S, Zhang J S, Zhang M Q, Chen R K. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane. Chin J Trop Crops, 2009, 30: 274–278 (in Chinese with English abstract)[26]Iskandar H M, Simpson R S, Casu R E, Bonnett G D, Maclean D J, Manners J M. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep, 2004, 22: 325–337[27]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 2001, 25: 402–408[28]Bosch S, Grof C P L, Botha F C. Expression of neutral invertase in sugarcane. Plant Sci, 2000, 166: 1125–1133[29]Rose S, Botha F C. Distribution patterns of neutral invertase and sugar content in sugarcane internodal tissues. Plant Physiol Biochem, 2000, 38: 819−824[30]Rossouw D, Bosch S, Kossmann J, Botha F C, Groenewald J H. Downregulation of neutral invertase activity in sugarcane cell suspension cultures leads to a reduction in respiration and growth and an increase in sucrose accumulation. Funct Plant Biol, 2007, 34: 490–498[31]Rossouw D, Kossmann J, Botha F C, Groenewald J H. Reduced neutral invertase activity in the culm tissues of transgenic sugarcane plants results in a decrease in respiration and sucrose cycling and an increase in the sucrose to hexose ratio. Funct Plant Biol, 2010, 37: 22–31[32]聂丽娜, 夏兰琴, 徐兆师, 高东尧, 李琳, 于卓, 陈明, 李连城, 马有志. 植物基因启动子的克隆及其功能研究进展. 植物遗传资源学报, 2008, 9: 385–391Nie L N, Xia L Q, Xu Z S, Gao D Y, Li L, Yu Z, Chen M, Li L C, Ma Y Z. Progress on cloning and functional study of plant gene promoters. J P1ant Genet Resour, 2008, 9: 385–391 (in Chinese with English abstract) |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[4] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[5] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[6] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[7] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[8] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[9] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[11] | 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341. |
[12] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[13] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[14] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[15] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
|