欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (03): 511-518.doi: 10.3724/SP.J.1006.2014.00511

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮量对油菜氮素积累和运转及氮素利用率的影响

左青松1,2,杨海燕1,冷锁虎2,曹石1,曾讲学1,吴江生1,周广生1,*   

  1. 1 华中农业大学植物科学技术学院, 湖北武汉 430070;2 扬州大学江苏省作物遗传生理重点实验室, 江苏扬州 225009
  • 收稿日期:2013-07-13 修回日期:2013-12-02 出版日期:2014-03-12 网络出版日期:2014-01-16
  • 通讯作者: 周广生, E-mail: zhougs@mail.hzau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31000685), 江苏高校优势学科建设工程资助项目, 国家科技支撑计划项目(2010BAD01B09)和国家现代农业产业技术体系建设专项(nycytx-00510)资助。

Effects of Nitrogen Fertilizer on Nitrogen Accumulation, Translocation and Nitrogen Use Efficiency in Rapeseed (Brassica napus L.)

ZUO Qing-Song1,2,YANG Hai-Yan1,LENG Suo-Hu2,CAO Shi1,ZENG Jiang-Xue1,WU Jiang-Sheng1,ZHOU Guang-Sheng1,*   

  1. 1College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China; 2 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
  • Received:2013-07-13 Revised:2013-12-02 Published:2014-03-12 Published online:2014-01-16
  • Contact: 周广生, E-mail: zhougs@mail.hzau.edu.cn

摘要:

2010—2012年度以5个不同油含量的常规油菜品种为材料,设置120 (N1)240 (N2)360 kg hm–2 (N3) 3个水平的氮肥处理,在初花期和成熟期取样及定期捡拾田间落叶,测定植株干物质积累量、氮素含量及油含量,研究氮肥水平对油菜氮素积累、运转及氮素利用率的影响。结果表明,随着氮肥用量增加,产量和氮素积累总量增加,氮素收获指数和氮素籽粒生产效率逐渐降低。不同处理叶片氮素运转率变幅为76.6%~80.2%,不同氮肥处理间无显著差异。不同处理茎枝氮素运转率变幅为36.0%~57.6%,随着氮肥用量增加而降低。不同处理落叶氮占植株总氮积累量比例的变幅为14.9%~20.3%,随着氮肥用量增加,落叶氮比例逐渐增加。不同处理初花期氮积累量占植株总氮量的变幅为75.5%~90.5%,随着氮肥用量的增加,其比例逐渐增加。初花期期积累氮素对后期产量形成作用较大,注重前期施肥可促进花芽分化,形成更多的有效角果,有利于获得高产。

关键词: 甘蓝型油菜, 氮素积累, 落叶, 氮素运转率, 氮素利用率

Abstract:

In this study, five conventional oilseed rape varieties with different oil contents, including Yangyou 6 (YY6), Suyou 211(SY211), Ningyou 20 (NY20), Zhongshuang 11 (ZS11), and Zheyou 50 (ZY50) were grown under three N (nitrogen) fertilizer levels: 120 (N1), 240 (N2), and 360 kg N ha-1 (N3) from 2010 to 2012. The effects of N application on N accumulation, N translocation rate and N use efficiency were studied through plant sampling, picking deciduous leaf and measuring dry matter weight, N content and oil content. The results showed that with increasing N application rates yield and total N amount in whole plant increased, and N harvest index (NHI) and N use efficiency for grain production (NUEg) decreased. The N translocation rate in leaf ranged from 76.6% to 80.2%, and there were no significant differences among different N fertilizer levels. The nitrogen translocation rate in stem ranged from 36.0% to 57.6%, and decreased with increasing N application rates. The N proportion of deciduous leaf to whole plant ranged from 14.9% to 20.3%, and increased with increasing N application rates. The N proportion of the beginning of flowering stage to ripening stage was from 75.5% to 90.5%, and increased with increasing N application rates. The effect of N amount at the beginning of flowering stage on yield is significant. N application at earlier stage promotes flower bud differentiation and increases effective pods, resulting in higher yield.

Key words: Rapeseed (Brassica napus L.), N accumulation, Deciduous leaf, N translocation rate, N use efficiency

[1]王汉中. 我国油菜产需形势分析及产业发展对策. 中国油料作物学报, 2007, 29(1): 101–105



Wang H Z. Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China. Chin J Oil Crop Sci, 2007, 29(1): 101–105 (in Chinese with English abstract)



[2]冷锁虎, 单玉华, 周宝梅. 氮素营养对油菜成熟期生物产量的调控. 中国油料作物学报, 2000, 22(2): 53–56



Leng S H, Shan Y H, Zhou B M. Regulation of N nutrition to biomass of oilseed in ripening stage. Chin J Oil Crop Sci, 2000, 22(2): 53–56 (in Chinese with English abstract)



[3]Asare E, Scarisbrick D H. Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape (Brassica napus L.). Field Crops Res, 1995, 44: 41–46



[4]Dreccer M F, Schapendonk A H C M, Slafer G A, Rabbinge R. Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilization efficiency of radiation and nitrogen during the reproductive stages determining yield. Plant Soil, 2000, 220: 189–205



[5]Rathke G W, Christen O, Diepenbrock W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res, 2005, 94: 103–113



[6]冷锁虎, 朱耕如, 邓秀兰. 油菜籽粒干物质来源的研究. 作物学报, 1992, 18: 250–257



Leng S H, Zhu G R, Deng X L. Studies on the sources of the dry matter in the seed of rapeseed. Acta Agron Sin, 1992, 18: 250–257 (in Chinese with English abstract)



[7]胡会庆, 刘安国, 王维金. 油菜光合速率日变化的初步研究. 华中农业大学学报, 1998, 17: 430–433



Hu H Q, Liu A G, Wang W J. Study on daily change and midday depression of photosynthetic rate in rape leaves under field condition. J Huazhong Agric Univ, 1998, 17: 430–433 (in Chinese with English abstract)



[8]时向东, 时映, 王瑞宝, 戴吉林, 夏开宝, 张庆刚. 稳定氮同位素示踪技术在烟草研究中的应用. 中国烟草学报, 2008, 14(1): 51–57



Shi X D, Shi Y, Wang R B, Dai J L, Xia K B, Zhang Q G. Applications of stable nitrogen isotope on tobacco research. Acta Tab Sin, 2008, 14(1): 51–57 (in Chinese with English abstract)



[9]魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008, 34: 119–125



Wei H Y, Zhang H C, Hang J, Dai Q G, Huo Z Y, Xu K, Zhang S F, Ma Q, Zhang Q, Zhang J. Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agron Sin, 2008, 34: 119–125 (in Chinese with English abstract)



[10]郑成岩, 于振文, 王西芝, 武同华. 灌水量和时期对高产小麦氮素积累、分配和转运及土壤硝态氮含量的影响. 植物营养与肥料学报, 2009, 15: 1324–1332



Zheng C Y, Yu Z W, Wang X Z, Wu T H. Effects of irrigation amount and stage on nitrogen accumulation, distribution, translocation and soil NO3–-N content in high-yield wheat. Plant Nutr Fert Sci, 2009, 15: 1324–1332 (in Chinese with English abstract)



[11]鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 30–107



Bao S D. Soil Agricultural-Chemical Analysis. Beijing: China Agriculture Press, 2000. pp 30–107 (in Chinese)



[12]单玉华, 王余龙, 山本由德, 黄建晔, 杨连新, 张传胜. 不同类型水稻在氮素吸收及利用上的差异. 扬州大学学报(自然科学版), 2001, 4(3): 42–46



Shan Y H, Wang Y L, Yamamoto Y, Huang J Y, Yang L X, Zhang C S. Study on the differences of nitrogen uptake and use efficiency in different types of rice. J Yangzhou Univ (Nat Sci Edn), 2001, 4(3): 42–46 (in Chinese with English abstract)



[13]Rathke G W, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric Ecosyst Environ, 2006, 117: 80–108



[14]宁堂原, 焦念元, 张 民, 郑延海, 赵春, 安艳艳, 李增嘉. 不同品种组合下春夏玉米套作的氮素利用特征研究. 作物学报, 2007, 33: 1896–1901



Ning T Y, Jiao N Y, Zhang M, Zheng Y H, Zhao C, An Y Y, Li Z J. Nitrogen use characteristic in maize relay-cropping system of different cultivars. Acta Agron Sin, 2007, 33(11): 1896–1901 (in Chinese with English abstract)



[15]Janaki P, Raja R A, Vadivel A. Effect of different levels of nitrogen and phosphorus on nitrogen use efficiency in cotton. Adv Plant Sci, 2008, 21: 513–516



[16]Nouriyani H, Majidi E, Seyyednejad S M, Siadat S A, Naderi A. Evaluation of nitrogen use efficiency of wheat (Triticum aestivum L.) as affected by nitrogen fertilizer and different levels of paclobutrazol. Res Crops, 2012, 13: 439–445



[17]曹仁林, 贾晓葵. 我国集约化农业中氮污染问题及防治对策. 土壤肥料, 2001, (3): 3–6



Cao R L, Jia X K. The problems and control countermeasures of nitrogen pollution in agriculture of China. Soils Fert, 2001, (3): 3–6 (in Chinese with English abstract)



[18]张维理, 田哲旭, 张 宁, 李晓齐. 我国北方农用氮肥造成地下水硝酸盐污染的调查. 植物营养与肥料学报, 1995, 1: 80–87



Zhang W L, Tian Z X, Zhang N, Li X Q. Investigation of nitrate pollution in ground water due to nitrogen fertilization in agriculture in North China. Plant Nutr Fert Sci, 1995, 1: 80–87 (in Chinese with English abstract)



[19]江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004, 37: 490–496



Jiang L G, Cao W X, Gan X Q, Wei S Q, Xu J Y, Dong D F, Chen N P, Lu F Y, Qin H D. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Sci Agric Sin, 2004, 37: 490–496 (in Chinese with English abstract)



[20]卢艳丽, 陆卫平, 王继丰, 刘萍, 刘小兵, 陆大雷, 苏辉. 不同基因型糯玉米氮素吸收利用效率的研究: I. 氮素吸收利用的基因型差异. 植物营养与肥料学报, 2006 ,12: 321–326



Lu Y L, Lu W P, Wang J F, Liu P, Liu X B, Lu D L, Su H. The differences of nitrogen uptake and utilization in waxy corn: I. The difference genotypes in absorption and utilization of nitrogen. Plant Nutr Fert Sci, 2006, 12: 321–326 (in Chinese with English abstract)

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!