作物学报 ›› 2014, Vol. 40 ›› Issue (04): 591-599.doi: 10.3724/SP.J.1006.2014.00591
马娇,任德勇,吴国超,朱小燕,马玲,桑贤春,凌英华,何光华*
MA Jiao,REN De-Yong,WU Guo-Chao,ZHU Xiao-Yan,MA Ling,SANG Xian-Chun,LING Ying-Hua,HE Guang-Hua*
摘要:
植物叶色变化对叶绿体发育和叶绿素生物合成等光合系统结构和调控机制的研究有着重要的理论意义。水稻叶缘白化突变体mal (marginal albino leaf),来源于恢复系缙恢10号(Oryza sativa L.ssp. indica)的EMS诱变群体,经过多代自交,其突变性状遗传稳定。与野生型相比,mal突变体整个生育期叶片边缘白化且叶片变窄,抽穗期倒三叶叶片、倒二叶叶边缘以及倒三叶叶边缘的叶绿素含量极显著降低。透射电镜观察发现,mal突变体叶片绿色部位细胞与叶绿体发育完全,白化部分叶肉细胞大部分中空,无明显完整的细胞器,叶绿体内部完全降解。遗传分析表明该突变体受隐性核基因控制,MAL被定位在第8染色体上SSR标记M22和InDel标记ID27之间,物理距离为171 kb。本研究将为MAL基因的图位克隆及功能研究奠定基础。
[1]Klimyuk V I, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones J D G, Hoffmanc N E, Laurent Nussaume. A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell, 1999, 1: 87–99[2]Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41: 364–375[3]Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S B, Wang C L. Physiological character and gene mapping in a new green-revertible albino mutant in rice. Genet Genomics, 2007, 34: 331–338[4]Motohashi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T, Yoshida S, Yamaguchi-Shinozaki K, Shinozaki K. Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale green mutant. Plant J, 2003, 34: 719–731[5]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 958–996[6]Ihnatowicz A, Pesaresi P, Varotto C, Richly E, Schneider A, Jahns P, Salamini F, Leister D. Mutants for photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. Plant J, 2004, 37: 839–852[7]Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell, 2005, 17: 233–240[8]Jung K H, Hur J, Ryu C H, Choi Y. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472[9]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906[10]董凤高, 朱旭东, 熊振民, 程式华, 孙宗修, 闵绍楷. 以淡绿叶为标记的籼型一温敏核不育系M2S的选育. 中国水稻科学, 1995, 9: 65–70Dong F G, Zhu X D, Xiong Z M, Cheng S H, Sun Z X, Min S K. Breeding of a photo-thermoperiod sensitive genic male sterile indica rice with a pale- green- leaf marker. Chin J Rice Sci, 1995, 9: 65–70 (in Chinese with English abstract)[11]吴自明, 张欣, 万建民. 水稻黄绿叶基因的克隆及应用. 生命科学, 2007, 12: 614–615Wu Z M, Zhang X, Wan J M. Cloning and application of yellow-green leaf genes in rice. Chin Bull Life Sci, 2007, 12: 614–615 (in Chinese)[12]Iwata N, Omura T. Studies on the trisomics in rice plants (Oryza sativa L.): III. Relation between trisomics and genetic linkage groups. Jpn J Breed, 1975, 25: 363–368[13]Zhang H, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337[14]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818[15]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai F Q, Wan J M. A chlorophyll-de?cient rice mutant with impaired chlorophyllide esteri?cation in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40[16]Yoo S C, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Koh I, Paek N C. Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150: 388–401[17]Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52: 512–527[18]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375[19]Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, KohH J, Jeon J S, Park Y I, Paek N C. The senescence-induced stay-green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664[20]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) α can be converted to monovinyl chlorophyll(ide) α by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003[21]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133[22]Dong H, Fei G L, Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H Y, Wan J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013, 162: 1867–1880[23]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol, 1987, 48: 350−382[24]张守仁. 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999, 16: 444–448Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chin Bull Bot, 1999, 16: 444–448 (in Chinese with English abstract)[25]何瑞峰, 丁毅, 余金洪, 祖明生. 水稻温敏叶绿素突变体叶片超微结构的研究. 武汉植物学研究, 2001, 19: 1–5He R F, Ding Y, Yu J H, Zu M S. Study on leaf ultrastructure of the thermo-sensitive chlorophyll deficient mutant in rice. J Wuhan Bot Res, 2001, 19: 1–5 (in Chinese with English abstract)[26]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832[27]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325[28]桑贤春, 何光华, 张毅, 杨正林, 裴炎. 水稻PCR扩增模板的快速制备. 遗传, 2003, 25: 705–707Sang X C, He G H, Zhang Y, Yang Z L, Pei Y. The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing), 2003, 25: 705–707 (in Chinese with English abstract)[29]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607[30]徐培洲,李云,袁澍,张红宇, 彭海, 林宏辉, 汪旭东, 吴先军.叶绿素缺乏水稻突变体中光系统蛋白和叶绿素合成特性的研究. 中国农业科学, 2006, 39: 299-305Xu P Z, Li Y, Yuan S, Zhang H Y, Peng H, Lin H H, Wang X D, Wu X J. Studies of photosystem complexes and chlorophyll synthesis in chlorophyll-deficient rice mutant W1. Sci Agric Sin, 2006, 39: 299–305 (in Chinese with English abstract)[31]Zhao Y, Di L F, Yang S H, Li S C, Zang Y Z. Chloroplast composition and structural differences in a chlorophyll reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43: 877–880[32]Huang X Q, Wang P R, Zhao H X, Deng X J. Genetic analysis and molecular mapping of a novel chlorophyll deficit mutant gene in rice. Rice Sci, 2008, 15: 7–12[33]Liu W Z, Fu Y P, Hu G C, Si H M, Zhu L, Wu C, Sun Z X. Identification and fine mapping of a thermo sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226: 785–795[34]Iwata N, Satoh H, Omura T. Linkage analysis by use of trisomics in rice (Oryza sativa L.): IV. Linkage groups locating on chromosomes 2 and 10. Jpn J Breed, 1981, 31: 66–67[35]程世超, 刘合芹, 翟国伟, 冯世座, 赵辉, 汪得凯, 陶跃之. 水稻白化致死突变体abl4的鉴定和基因定位. 中国水稻科学, 2013, 27: 240–246Cheng S C, Liu H Q, Zhai G W, Feng S Z, Zhao H, Wang D K, Tao Y Z. Genetic analysis and gene mapping of an albino lethal mutant in rice. Chin J Rice Sc, 2013, 27: 240–246 (in Chinese with English abstract) [36]余庆波, 江华, 米华玲, 周根余, 杨仲南. 水稻白化突变体alb21生理特性和基因定位. 上海师范大学学报, 2005, 34: 70–75Yu Q B, Jiang H, Mi H L, Zhou G Y, Yang Z N. Physiological property and gene mapping of an albino mutant alb21 in rice. J Shanghai Norm Univ, 2005, 34: 70–75 (in Chinese)[37]李育红, 王宝和, 戴正元, 李爱宏, 赵步洪, 左示敏, 陈忠祥, 张洪熙, 潘学彪. 水稻叶色突变体及其基因定位、克隆的研究进展. 江苏农业科学, 2011, 39: 34–39Li Y H, Wang B H, Dai Z Y, Li A H, Zhao B H, Zuo S M, Chen Z X, Zhang H X, Pan X B. The research advances of gene mapping and cloning of leaf color mutants in rice. Jiangsu Agric Sci, 2011, 39: 34–39 (in Chinese)[38]Parks B M, Quail P H. Phytochrome-deficient hyl and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell, 1991: 1177–1186[39]朱丽, 刘文真, 吴超, 栾维江, 傅亚萍, 胡国成, 斯华敏, 孙宗修. 水稻着丝粒附近一个淡绿叶突变相关基因的定位分析. 中国水稻科学, 2007, 21: 228–234Zhu L, Liu W Z, Wu C, Luan W J, Fu Y P, Hu G C, Si H M, Sun Z X. Identification and fine mapping of a gene related to pale green leaf near centromere region in rice (Oryza sativa L.). Chin J Rice Sci, 2007, 21: 228–234 (in Chinese with English abstract)[40]Xia J C, Wang Y P, Ma B T, Yin Z Q, Hao M, Kong D W, Li S G. Ultrastructure and gene mapping of the albino mutant al12 in rice (Oryza sativa L.). Acta Genet Sin, 2006, 33: 1112–1119[41]Siddappa K, Vasudev K L, Ganiger B S, Rathod R, Devar K V. Report of albino seedlings in Pongamia pinnata. Karnataka J Agric Sci, 2004, 17: 884–885[42]Chen T, Zhang Y D, Zhao L, Zhu Z, Lin J, Zhang S B, Wang C L. Physiological character and gene mapping in a new green-revertible albino mutant in rice. J Genet Genomics, 2007, 34: 331–338[43]Chen T, Zhang Y D, Zhao L, Zhu Z, Lin J, Zhang S B, Wang C L. Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. J Genet Genomics, 2009, 36: 117–123 [44]Lan T, Wang B, Ling Q P, Xu C H, Tong Z J, Liang K J, Duan Y L, Jin J, Wu W R. Fine mapping of cisc(t), a gene for cold-induced seedling chlorosis, and identification of its candidate in rice. Chin Sci Bull, 2010, 55: 3149–3153 |
[1] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[2] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[3] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[4] | 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227. |
[5] | 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868. |
[6] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
[7] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[8] | 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60. |
[9] | 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79. |
[10] | 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367. |
[11] | 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005. |
[12] | 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996. |
[13] | 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213. |
[14] | 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227. |
[15] | 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058. |
|