作物学报 ›› 2014, Vol. 40 ›› Issue (04): 581-590.doi: 10.3724/SP.J.1006.2014.00581
黄志熊1,2,王飞娟2,蒋晗2,李志兰3,丁艳菲2,江琼2,陶月良4,朱诚1,2,*
HUANG Zhi-Xiong1,2,WANG Fei-Juan2,JIANG Han2,LI Zhi-Lan3,DING Yan-Fei2,JIANG Qiong2,TAO Yue-Liang4,ZHU Cheng1,2,*
摘要:
内源小干扰RNAs (small interfering RNAs, siRNAs)和DNA甲基化在植物生长发育和适应环境胁迫中调控基因的表达。对于植物来说, 镉(Cadmium, Cd)是一种非必需且具有毒性的元素。为研究DNA甲基化和siRNAs在水稻(Oryza sativa L.) Cd积累相关基因表达调控方面的作用, 比较了Cd高积累品种(秀水110)和Cd低积累品种(秀水11)中Cd积累相关基因的表达情况。结果表明, 在秀水110和秀水11叶片中, 除植物Cd抗性蛋白(plant cadmium resistance protein, PCR)基因家族成员OsPCR1的表达水平呈现出显著的差异外, 其他Cd积累相关基因的表达水平不存在显著的差异。说明OsPCR1基因可能参与调控水稻体内Cd的积累。利用荧光实时定量PCR (qRT-PCR)技术研究了水稻叶片中siRNA表达水平在水稻5个不同生长发育期中的变化情况。数据显示水稻叶片中与OsPCR1基因外显子2匹配的siRNA的丰度和OsPCR1基因的表达水平呈负相关。进一步利用McrBC-qRT-PCR技术研究OsPCR1基因外显子2甲基化水平在水稻5个不同生长发育期中的变化情况表明, 在Cd处理条件下水稻叶片中OsPCR1基因外显子2甲基化水平和该基因的表达水平也呈负相关。说明, 在水稻体内Cd积累的过程中, 该siRNA和OsPCR1基因外显子2甲基化可能参与调控OsPCR1基因的表达。这些结果对于研究OsPCR1基因的功能和培育Cd低积累水稻品种具有重要的理论指导意义。
[1]Uraguchi S, Kamiya T, Sakamoto T, Kssai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA, 2011, 108: 20959–20964[2]Ueno D, Koyama E, Yamaji N, Ma J F. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivars, Jarjan. J Exp Bot, 2011, 62: 2262–2272[3]Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot, 2009, 60: 2677–2688[4]Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot, 2011, 62: 4843–4850[5]Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefian S, Kusano T. Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol, 2009, 50: 106–117[6]Shen G M, Zhu C, Du Q Z. Genome-wide identification of PHYTOCHELATIN and PHYTOCH_SYNTH domain-containing phytochelatin family from rice. Electronic J Biol, 2010, 6:73–79[7]Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa N K. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot, 2011, 62: 5727–5734[8]Song W Y, Choi K S, Alexis D A, Martinoia E, Lee Y. Brassica juncea plant cadmium resistance 1 protein (BjPCR1) facilitates the radial transport of calcium in the root. Proc Natl Acad Sci USA, 2010, 108: 1908–19813[9]Song W Y, Choi K S, Kim D Y, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim S H, Lim Y P, Noh E W, Lee Y, Martinoia E. Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell, 2010, 22: 2237–2252[10]Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol, 2002, 53: 159–182[11]Song W Y, Hörtensteiner S, Tomioka R, Lee Y, Martinoia E. Common functions or only phylogenetically related? The large family of PLAC8 motif-containing/PCR genes. Mol Cells, 2011, 31: 1–7[12]Song W Y, Martinoia E, Lee J, Kim D, Kim D Y, Vogt E, Shim D, Choi K S, Hwang I, Lee Y. A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol, 2004, 135: 1027–1039[13]Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123: 1279–1291[14]Carthew R W, Sontheimer E J. Origins and mechanisms of miRNA and siRNAs. Cell, 2009, 136: 642–655[15]Moldovan D, Spriggs A, Yang J, Pogson B J, Dennis E S, Wilson I W. Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot, 2010, 61: 165–177[16]Yan Y, Zhang Y, Sun Z, Fu Y, Chen X, Fang R. Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J, 2011, 65: 820–828[17]Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R, Zhu J K, Sun Q. Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L. ). Funct Integr Genomic, 2010, 10: 187–190[18]Kim V N, Han J, Siomi M C. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 2009, 10: 126–139[19]Hannon G J. RNA interference. Nature, 2002, 418: 244–251[20]Song J J, Smith S K, Hannon G J, Joshua-Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 2004, 305: 1434–1437[21]Law J A, Jacobsen S E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet, 2010, 11: 204–220[22]Chan S W L, Henderson I R, Jacobsen S E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet, 2005, 6: 351–360[23]Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One, 2010, 5: e9514[24]Choi C S, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics, 2007, 277: 589–600[25]Greco M, Chiappetta A, Bruno L, Bitonti M B. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot, 2012, 63: 695–709[26]Verhoeven K J F, Jansen J J, Dijk P J, Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol, 2010, 185: 1108–1118[27]Raj S, Brautigen K, Hamanishi E T, Wilkins O, Thomas B R, Schroeder W, Mansfield S D, Plant A L, Campbell M M. Clone history shapes populous drought response. Proc Natl Acad Sci USA, 2011, 108: 12521–12526[28]Ball M P, Li J B, Gao Y, Lee J H, LeProust E M, Park I H, Xie B, Daley G Q, Church G M. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol, 2009, 27: 361–368[29]Hellman A, Chess A. Gene Body-specific methylation on the active X chromosome. Science, 2007, 315: 1141–1143[30]Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo Q M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462: 315–322[31]Kawanabe T, Fujimoto R, Sasaki T, Taylor J M, Dennis E S. A comparison of transcriptome and epigenetic status between closely related species in the genus Arabidopsis. Gene, 2012, 506: 301–309[32]Zilberman D, Gehring M, Tran R K, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet, 2007, 39: 61–69[33]Suzuki M M, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008, 9: 465–476[34]He J, Zhu C, Ren Y, Yan Y, Jiang D. Genotypic variation in grain cadmium concentration of lowland rice. J Plant Nutr Soil Sci, 2006, 169: 711–716 [35]何俊瑜,任艳芳,朱诚,蒋德安. 镉胁迫对不同水稻品种种子萌发、幼苗生长和淀粉酶活性的影响. 中国水稻科学, 2008, 22: 399–404 He J Y, Ren Y F, Zhu C, Jiang D A. Effects of cadmium stress on seed germination, seedling growth, and amylase activities in rice. Chin J Rice Sci, 2008, 22: 399–404 (in Chinese with English abstract)[36]Ding Y, Chen Z, Zhu C. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot, 2011, 62: 3563–3573 [37]Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res, 2001, 29: e45[38]Serra I A, Procaccini G, Intrieri M C, Migliaccio M, Mazzuca S, Innocenti A M. Comparison of ISSR and SSR markers for analysis of genetic diversity in the seagrass Posidonia oceanica. Marine Ecology Progress Series, 2007, 338: 71–79[39]Teixeira F K, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga M F, Voinnet O, Wincker P, Esteller M, Colot V. A role for RNAi in the selective correction of DNA methylation defects. Science, 2009, 323: 1600–1604[40]Johnson C, Bowman L, Adai A T, Vance V, Sundaresan V. CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res, 2007, 35: D829–D833[41]Brandeis M, Ariel M, Cedar H. Dynamics of DNA methylation during development. Bioessays, 1993, 15: 709–713[42]赵嵘, 胡丽玲, 孔繁强, 左爱军. PXR基因外显子3甲基化与肠癌细胞对5氟尿嘧啶的耐药性相关. 中国生物化学与分子生物学报, 2013, 29: 63–69Zhao R, Hu L L, Kong F Q, Zuo A J. Association between pregnane X receptor gene exon3 methylation with 5-fluorouracil resistance of the colon cancer cells. Chin J Biochem Mol Biol, 2013, 29: 63–69 (in Chinese with English abstract)[43]Hohn T, Corsten S, Rieke S, Muller M, Rothnie H. Methylation of coding region alone inhibits gene expression in plant protoplasts. Proc Natl Acad Sci USA, 1996, 93: 8334–8339[44]Rountree M R, Selker E U. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev, 1997, 11: 2383–2395[45]Xiao Z, Wang C, Mo D, Li J, Chen Y, Zhang Z, Cong P. Promoter CpG methylation status in porcine Lyn is associated with its expression levels. Gene, 2012, 511: 73–78[46]Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen S E, Robinson G E, Maleszka R. DNA methylation dynamics, metabolic fluxes, genesplicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci USA, 2012, 109: 4968–4973[47]Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 2011, 479: 74–79 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|