欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (04): 657-666.doi: 10.3724/SP.J.1006.2014.00657

• 耕作栽培·生理生化 • 上一篇    下一篇

应用主动传感器GreenSeeker估测大豆籽粒产量

张宁1,**, 齐波1,**,赵晋铭1,张小燕2,王素阁2,赵团结1,盖钧镒1,*   

  1. 1 南京农业大学大豆研究所 / 国家大豆改良中心 / 农业部大豆生物学与遗传育种重点实验室(综合) / 作物遗传与种质创新国家重点实验室, 江苏南京 210095; 2 圣丰种业院士工作站, 山东济宁 272000
  • 收稿日期:2013-10-11 修回日期:2014-01-12 出版日期:2014-04-12 网络出版日期:2014-02-14
  • 通讯作者: 盖钧镒, E-mail: sri@njau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB1184), 国家公益性行业(农业)科研专项经营项目(200803060, 201203026-4)和江苏省优势学科建设工程专项和国家重点实验室自主课题。

Prediction for Soybean Grain Yield Using Active Sensor GreenSeeker

ZHANG Ning1,**,QI Bo1,**,ZHAO Jin-Ming1,ZHANG Xiao-Yan2,WANG Su-Ge2,ZHAO Tuan-Jie1,GAI Jun-Yi1,*   

  1. 1 Soybean Research Institute / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General), Minister of Agriculture / National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China;
    2 Shofine Academician Workstation, Jining 272000, China
  • Received:2013-10-11 Revised:2014-01-12 Published:2014-04-12 Published online:2014-02-14
  • Contact: 盖钧镒, E-mail: sri@njau.edu.cn

摘要:

主动遥感技术可以方便、快捷、无损伤性地监测大豆生长。以黄淮海地区圣丰种业20112012年大豆育种品系和重组自交家系1272个家系群体(NJRIKY)为材料,分组设置试验,采用随机区组、重复内分组以及格子设计,重复3次,采用主动传感器GreenSeeker监测苗期、开花期、结荚期和鼓粒期冠层反射光谱,获得冠层归一化植被指数(NDVI),搜索大豆冠层NDVI与产量的共变化规律,建立产量估算模型。结果表明,大豆冠层NDVI随生育期的推进呈--变化趋势;基于单一生育期冠层NDVI建立的产量估测模型大多为简单线性回归,鼓粒期效果最好;基于多生育期冠层NDVI建立的产量估测模型中,由育种家系试验建立的大豆产量最佳估测模型(y = e6.9–4.1x1+4.3x2+1.4x3)的决定系数(R2)可达到0.66;用此模型对重组自交家系群体(NJRIKY)估产,与实际产量的符合度可达0.59。所建模型具有一定的预测效果,在规模化育种中可用于育种中期无重复试验的产量预测和初步选择。

关键词: 大豆, 产量, 归一化植被指数, 主动传感器, 遥感估测

Abstract:

Active remote sensing can be used to monitor soybean growth with a convenient, fast and nondestructive technology. At Shofine Academician Workstation, a total of 1272 soybean lines, including  breeding lines and recombinant inbred lines (NJRIKY), were grouped and tested in random complete block, block in replication or lattice design with three replicates in 2011 and 2012, respectively. Using active remote sensor GreenSeeker, the canopy NDVI (normalized difference vegetation index) was measured at seedling, flowering, podding and seed-filling stages, from which the yield prediction models depending on NDVI measurements were established and analyzed. The results showed that the soybean canopy NDVI presented a low-high-low changing trend from the early to the late stages. Among the single stage prediction models for yield, that for seed-filling stage was the best with higher coefficient of determination and lower standard errors. However, for a precise prediction, the regression of yield on NDVI at multiple stages was better than the others. Among which, the yield prediction model constructed from NDVI at flowering, podding and seed-filling stages of all breeding lines was the best one (y = e6.9–4.1x1+4.3x2+1.4x3) with R2 = 0.66. Using this model to predict the NJRIKY lines, the coincidence between the measured and predicted values was 0.59. This model can be used at the middle stage of breeding programs for yield prediction of the breeding lines without replicated yield test.

Key words: Soybean, Yield, NDVI, Active sensor, Remote sensing prediction

[1]Wilcox J R. World distribution and trade of soybean. In: soybeans: Improvement, Production and Uses, 3rd Edn. Madison: American Society of Agronomy Press, 2004. pp 1–13



[2]Clake E J, Wiseman J. Developments in plant breeding for improved nutritional quality of soybean: I. protein and amin acids content. Agric Sci, 2000, 134: 111–124



[3]Frideman M, Brandon D L. Nutritional and health benefits of soybean proteins. Agric Food Chem, 2001, 49: 1069–1086



[4]Tennakoon S B, Murty V V N, Eiumnoh A. Estimation of cropped area and grain yield of rice using remote sensing data. Int J Remote Sens, 1992, 13: 426–439



[5]Trishchenko A P. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors: extension to AVHRR NOAA-17, 18 and METOP-A. Remote Sens Environ, 2009, 113: 335–341



[6]Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ, 2003, 86: 542–553



[7]Aparicio N, Villegas D, Casadesus J, Araus J L, Royo C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron J, 2000, 92: 83–91



[8]Soenen S A, Peddle D R, Hall R J, Coburn C A, Hall F G. Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sens Environ, 2010, 114: 1325–1337



[9]Gianquinto G, Orsini F, Fecondini M, Mezzetti M, Sanbo P, Bona S. A methodological approach for defining spectral indices for assessing tomato nitrogen status and yield. Eur J Agron, 2011, 35: 135–143



[10]吴琼, 齐波, 赵团结, 姚鑫锋, 朱艳, 盖钧镒. 高光谱遥感估测大豆冠层生长和籽粒产量的探讨. 作物学报, 2013, 39: 309–318



Wu Q, Qi B, Zhao T J, Yao X F, Zhu Y, Gai J Y. A tentative study on utilization of canopy hyperspectral reflectance to estimate canopy growth and seed yield in soybean. Acta Agron Sin, 2013, 39: 309–318 (in Chinese with English abstract)



[11]Mkhabela M S, Bullock P, Raj S, Wang S, Yang Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric For Meteorol, 2011, 115: 385–393



[12]Hasegawa K, Matsuyama H, Tsuzuki H, Sweda T. Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures. Remote Sens Environ, 2010, 114: 514–519



[13]William R R, Gordon V J. Improving nitrogen use efficiency forcereal production. Agron J, 1999, 91: 357–363



[14]吴军华, 岳善超, 侯鹏, 孟庆峰, 崔振领, 李雯, 陈新平. 基于主动遥感的冬小麦群体动态监测. 光谱学与光谱分析, 2011, 31: 535–538



Wu J H, Yue S C, Hou P, Meng Q F, Cui Z L, Li W, Chen X P. Monitoring winter wheat population dynamics using an activecrop sensor. Spectrosc Spectr Anal, 2011, 31: 535–538 (in Chinese with English abstract)



[15]谭昌伟, 王纪华, 朱新开, 王妍, 王君婵, 童璐, 郭文善. 基于Landsat TM影像的冬小麦拔节期主要长势参数遥感监测. 中国农业科学, 2011, 44: 1358–1366



Tan C W, Wang J H, Zhu X K, Wang Y, Wang J C, Tong L, Guo W S. Monitoring main growth status parameters at jointing stage in winter wheat based on Landsat TM images. Sci Agric Sin, 2011, 44: 1358–1366 (in Chinese with English abstract)



[16]冯美臣, 肖璐洁, 杨武德, 丁光伟. 基于遥感数据和气象数据的水旱地冬小麦产量估测. 农业工程学报, 2010, 26(11): 183–188



Feng M C, Xiao L J, Yang W D, Ding G W. Predicting grain yield of irrigation-land and dry-land winter wheat based on remotesensing data and meteorological data. Trans CSAE, 2010, 26(11): 183–188 (in Chinese with English abstract)



[17]Reyniers M, Vrindts E, Baerdemaeker J D. Comparison of an aerialbased system and an on the ground continuous measuring device to predict yield of winter wheat. Eur J Agron, 2006, 24: 87–94



[18]Erdle K, Mistele B, Schmidhalter U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res, 2011, 124: 74–84



[19]Raun W R, Solie J B, Stone M L, Martin K L, Freeman K W, Mullen R W, Zhang H, Schepers J S, Johnson G V. Optical sensor-based algorithm for crop nitrogen fertilization. Commun Soil Sci Plant Anal, 2005, 36, 2759–2781



[20]Thomason W E, Phillips S B, Raymond F D. Defining useful limits for spectral reflectance measures in corn. J Plant Nutr, 2007, 30, 1263–1277



[21]Inman D, Khosla R, Reich R M, Westfall, D G. Active remote sensing and grain yield in irrigated maize. Precision Agric, 2007, 8: 241–252



[22]Phillips S B, Keahey D A, Warren J G, Mullins G L. Estimating winter wheat tiller density using spectral reflectance sensors for early-spring, Variable-Rate Nitrogen Applications. Agron J, 2004, 96: 591–600



[23]Aboelghar M, Arafat S, Saleh A, Naeemb S, Shirbeny M, Belal A. Retrieving leaf area index from SPOT4 satellite data. Egypt J Remote Sens Space Sci, 2010, 13: 121–127



[24]王磊, 白由路, 卢艳丽, 王贺, 杨俐苹. 基于GreenSeeker的冬小麦NDVI分析与产量估算. 作物学报, 2012, 38: 747–753



Wang L, Bai Y L, Lu Y L, Wang H, Yang L P. NDVI analysis and yield estimation in winter wheat based on GreenSeeker. Acta Agron Sin, 2012, 38: 747–753 (in Chinese with English abstract)



[25]Ferrio J P, Villegas D, Zarco J, Aparicio N, Araus J L, Royo C. Assessment of durum wheat yield using visible and near-infrared reflectance spectra of canopies. Field Crops Res, 2005, 94: 126–148



[26]Pinter P J, Jackson R D, Idso S B, Reginato R J. Multidate spectral reflectance as predictors of yield in water stressed wheat and barley. Int J Remote Sens, 1981, 2: 43–48



[27]Mahey R K, Singh R, Sidhu S S, Narang R S. The use of remote sensing to assess the effects of water stress on wheat. Exp Agric, 1991, 27: 423–429



[28]Lukina E V, Freeman K W, Wynn K J, Thomason W E, Mullen R W, Stone M L, Solie J B, Klatt A R, Johnson G V, Elliott R L, Raun W R. Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. J Plant Nutr, 2001, 24: 885–898



[29]Raun W R, Johnson G V, Stone M L, Solie J B, Lukina E V, Thomason W E, Schepers J S. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron J, 2001, 93: 131–138



[30]Hansen P M, Jorgensen J R, Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J Agric Sci, 2002, 139: 307–318

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[14] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!