欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (07): 1157-1163.doi: 10.3724/SP.J.1006.2014.01157

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

酸不可溶性木质素和漆酶在棉花抗黄萎病中的作用

吴立柱,王省芬,张艳,李喜焕,张桂寅,吴立强,李志坤,马峙英*   

  1. 华北作物种质资源教育部重点实验室 / 河北省作物种质资源重点实验室 / 河北农业大学,河北保定 071001
  • 收稿日期:2014-02-16 修回日期:2014-04-16 出版日期:2014-07-12 网络出版日期:2014-05-16
  • 通讯作者: 马峙英, E-mail: mzhy@hebau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)前期研究专项(2011CB111609)资助。

Function of Acid Insoluble Lignin and GhLaccase in Cotton Resistance to Verticillium Wilt

WU Li-Zhu,WANG Xing-Fen,ZHANG Yan,LI Xi-Huan,ZHANG Gui-Yin,WU Li-Qiang,LI Zhi-Kun,MA Zhi-Ying*   

  1. North China Key Laboratory for Germplasm Resources of Education Ministry / Department of Plant Genetics and Breeding, Agricultural University of Hebei, Baoding 071001, China
  • Received:2014-02-16 Revised:2014-04-16 Published:2014-07-12 Published online:2014-05-16
  • Contact: 马峙英, E-mail: mzhy@hebau.edu.cn

摘要:

以抗病海岛棉Pima 90-53、耐病陆地棉冀棉20和感病陆地棉邯208为材料,研究黄萎病菌胁迫下棉花细胞壁的组织结构和木质素含量与棉花抗性的关系,并分析参与木质素合成的胞外漆酶的基因表达水平。结果发现,室内接种黄萎病菌24 h,在Pima 90-53的根部导管组织中没有发现病原菌的侵入,而在冀棉20和邯208的导管组织均有病原菌侵入;接种35 d时,Pima 90-53的茎部导管细胞壁高度木质化且导管堵塞不明显,冀棉20的导管细胞壁中度木质化且导管堵塞不明显,而邯208的导管细胞壁仅发生轻度木质化且导管堵塞严重。对田间病圃种植棉花叶片和叶柄的测定发现,3个品种的酸不可溶性木质素含量与品种的病情指数呈显著负相关(r = 0.99991*),酸不可溶与可溶性木质素的比值大小与棉花品种黄萎病抗性强弱表现一致。基于此,进一步采用Real-time PCR技术分析参与木质素合成的漆酶基因GhLaccas表达差异发现,在冀棉20接种病菌后各检测时间点的表达量均显著高于邯208,且在冀棉20中GhLaccase表达量较0 h升高9~14倍,在8 h达到最高并在72 h内一直维持较高水平,表现出较高的应答效率。以上结果表明酸不可溶性木质素含量与黄萎病抗性呈正相关,漆酶在棉花抗黄萎病过程中起着重要作用。

关键词: 棉花, 黄萎病, 木质素, 漆酶

Abstract:

To search cotton resistance to verticillium wilt, we inoculated Verticillium dahliae into roots of three cotton varieties with different resistance, Pima 90-53, Jimian 20, and Han 208, observed the structure of cell wall, determined the content of lignin and analyzed the transcript level of Laccase. The results showed that, at one day after infection (dpi), the pathogen was unobserved in root vascular tissue of Pima 90-53, while observed in Jimian 20 and Han 208. At 35 days after infection, the cell wall was highly lignified and the vascular was unblocked in Pima90-53, while there were moderately lignified and slightly blocked in Jimian 20, and lowly lignified and seriously blocked in Han208. The contents of acid soluble lignin (ASL) and acid insoluble lignin (AIL) in leaves and petioles of the three cotton varieties planted in the diseased nursery were measured. The results showed that the content of AIL was negatively correlated with the disease index of the three cultivars (r = 0.99991*), and the cotent ratio of AIL to ASL was in accord with the verticillium wilt resistance of cotton. The transcript level of Laccase was detected using real-time PCR method, the transcription level of GhLaccase in Jimian 20 was significantly higher than that in Han 208 at any point of test time. The expression level reached the highest at 8 h after infection and maintained the high level within three days. So GhLaccase performed high efficiency in response to the infection of Verticillium dahliae. In conclusion, AIL is positively correlated with the verticillium wilt resistance of cotton, and Laccase plays an important role in cotton resistance to Verticillium dahliae.

Key words: Cotton, Resistance to verticillium wilt, Lignin, Laccase

[1]马存, 陈其煐. 我国棉花抗枯、黄萎病育种研究进展. 中国农业科学, 1992, 25(1): 50–57



Ma C, Chen Q Y. Progress on studies of cotton resistant breeding fusarium and verticillium wilts in China. Sci Agric Sin, 1992, 25(1): 50–57 (in Chinese with English abstract)



[2]简桂良, 邹亚飞, 马存. 棉花黄萎病连年流行的原因及对策. 中国棉花, 2003, 30(3): 13–14



Jian G L, Zou Y F, Ma C. Current status and countermeasure of verticillium wilt of cotton in China. China Cotton, 2003, 30(3): 13–14 (in Chinese)



[3]Kotchoni S O, Gachomo E W. The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J Biosci, 2006, 31: 389–404



[4]陈捷胤, 戴小枫. 棉花对黄萎病的抗病机制研究进展. 分子植物育种, 2005, 3: 427–435



Chen J Y, Dai X F. Research Advance on the Resistant Mechanism of Cotton against Verticillium wilt. Mol Plant Breed, 2005, 3: 427–435 (in Chinese with English abstract)



[5]Smit F, Dubery I A. cell wall reinforcement in cotton hypocotyls inresponse to a verticillium dahliae elicitor. Phytochemistry, 1997, 44: 811–815



[6]Dong H Z, Li W J, Zhang D M, Tang W. Differential expression of induced resistance by an aqueous extract of killed Penicillium chrysogenum against verticillium wilt of cotton. Crop Prot, 2003, 22: 129–134



[7]王莉. 棉株受黄萎病菌侵染后组织结构变化与抗性的相互关系. 农业技术与装备, 2012, 22(11): 32–34



Wang L. The relationgshap between resistentant and the tissue construction of cotton indefectted by Verticillium dahliae. Agric Technol Equip, 2012, 22(11): 32–34 (in Chinese)



[8]侯丽娟, 李卫, 刘燕霞, 杨家荣. 棉花黄萎病菌毒素对棉花生化代谢的影响. 西北农业学报, 2010, 19(12): 63–67



Hou L J, Li W, Liu Y X, Yang J R. Effect of V. dahliae toxin on biochemical metabolism of cotton seedlings. Acta Agric Boreali-occident Sin, 2010, 19(12): 63–67 (in Chinese with English abstract)



[9]Hosokawa M, Suzuki S, Umezawa T, Sato Y. Progress of lignification mediated by intercellular transportation of monolignols during tracheary element differentiation of isolated Zinnia mesophyll cells. Plant Cell Physiol, 2001, 42: 959–968



[10]Bland D E, Skicko J, Menshun M. The relationship of acid insoluble lignin and acid soluble lignin to the lignins of the middle lamella and cell wall in Eucalyptus regnans. Holzforschung, 1975, 29: 144–147



[11]Xu L, Zhu L F, Tu L L, Liu L L, Yuan D J, Jin L, Long L, Zhang X L. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot, 2011, 62: 5607–5621



[12]Zhang Y, Wang X F, Yang S, Chi J N, Zhang G Y, Ma Z Y. Cloning and characterization of a verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Rep, 2011, 30: 2085–2096



[13]Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. NERL: Determination of structural carbohydrates and lignin in biomass. http://www.nrel.gov/biomass/analytical_procedures.html, 2013-03-15/2012-08



[14]王省芬, 田海燕, 马峙英, 张桂寅, 玄兆伶, 王文生, 孙艳香. 黄萎病菌诱导下陆地棉抗病品种SSH文库的构建. 棉花学报, 2008, 20(1): 3–8



Wang X F, Tian H Y, Ma Z Y, Zhang G Y, Xuan Z L, Wang W S, Sun Y X. SSH library construction of upland cotton resistant cultivar under the stress of Verticillium dahliae. Cotton Sci, 2008, 20(1): 3–8 (in Chinese with English abstract)



[15]张纯颖, 王省芬, 张桂寅, 吴立强, 迟吉娜, 李志坤, 马峙英. 黄萎病菌诱导下陆地棉抗病品种SSH文库的EST分析. 棉花学报, 2010, 22: 17–22



Zhang C Y, Wang X F, Zhang G Y, Wu L Q, Chi J N, Li Z K, Ma Z Y. ESTs analysis of suppression subtractive hybridization library from upland cotton resistant cultivar infected by Verticillium dahliae. Cotton Sci, 2010, 22(1): 17–22 (in Chinese with English abstract)



[16]Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408



[17]张桂寅, 吴立强, 李志坤, 工省芬, 马峙英. 不同抗性品种对棉花黄萎病菌致病力的影响. 棉花学报, 2012, 24: 529–534



Zhang G Y, Wu L Q, Li Z K, Wang X F, MA Z Y. Effect of host resistance on the pathogenicity of Verticillium dahliae isolates. Cotton Sci, 2012, 24: 529–534 (in Chinese with English abstract)



[18]Zhang Y, Wang X F, Ding Z G, Ma Q, Zhang G R, Zhang S L, Li Z K, Wu L Q, Zhang G Y, Ma Z Y. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genom, 2013, 14: 637–655



[19]Huisman O C. Interrelations of root growth dynamics to epidemiology of root-invading fungi. Ann Rev Phytopathol, 1982, 20: 303–327



[20]Debode J, Clewes E, Backer D D, Hoftea M. Lignin is involved in the reduction of Verticillium dahliae var. longisporum inoculum in soil by crop residue incorporation. Soil Biol Biochem, 2005, 37: 301–309



[21]Keegstra K. Plant cell walls. Plant Physiol, 2010. 154(2): 483-6



[22]张松贺, 马荣才. 伤害和软腐病菌侵染引起大白菜木质素合成途径基因表达水平提高及木质素含量增加. 中国农业生物技术学会第三届会员代表大会暨学术交流会论文摘要集, 2006. 64



Zhang S H, Ma R C. The Content of Lignin Improved in Chinese Cabbage and the Trascription Level of Genes in the Lignin Synthesis Pathway Increased Induced by Damage and Erwinia carotovora. Proceedings of the Third China Agricultural Biotechnology Academic Communication and Representative Assembly, 2006. p 64 (in Chinese)



[23]Vanholmer R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol, 2010, 153: 895–905



[24]Bao W, O'Malley D M, Whetten R, Sederoff R R. A laccase associated with lignification in loblolly pine xylem. Science, 1993, 260: 672–674.



[25]Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cezard L, Bris P L, Borrega N, Herve J, Blondet E, Balzergue S, Lapierre C, Jouanin L. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 2011, 23: 1124–1137



[26]Dean J F D, LaFayette P R, Rugh C, Tristram A M, Hoopes J T, Eriksson K E L, Markle S A. Laccase associated with lignifying vascular tissues. In: Lewis N G, Sarkanen S, eds. Lignin and lignan biosynthesis. American Chemical Society, Washington, DC. 1998. pp 96–108



[27]Li L, Steffens J C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 2002, 215: 239–247



[28]王骥, 朱木兰, 卫志明. 棉花漆酶基因在转基因新疆杨中的表达及其对木质素合成的影响. 分子细胞生物学报, 2008, 41: 11–18



Wang J, Zhu M L, Wei Z M. Cotton laccase gene overexpression in transgenic Populus alba var. pyramidalis and its effects on the lignin biosynthesis in transgenic plants. J Mol Cell Biol, 2008, 41: 11–18 (in Chinese with English abstract)



[29]Wang G D Li Q J, Luo B, Chen X Y. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory Laccasecase. Nat Biotechnol, 2004, 22: 893–897

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[8] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[9] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[10] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[13] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!