欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1350-1355.doi: 10.3724/SP.J.1006.2014.01350

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

赤霉素生物合成酶基因GhCPSGhKS参与甲哌鎓对棉花幼苗叶片生长的控制

王丽1,2,张明才1,杜明伟1,田晓莉1,李召虎1   

  1. 1 植物生长调节剂教育部工程研究中心 / 中国农业大学农学与生物技术学院, 北京100193; 2 河南师范大学生命科学学院, 河南新乡453007
  • 收稿日期:2014-03-06 修回日期:2014-04-16 出版日期:2014-08-12 网络出版日期:2014-06-03
  • 通讯作者: 李召虎, E-mail: lizhaohu@cau.edu.cn, Tel: 010-62733427
  • 基金资助:

    本研究由国家自然科学基金项目(31271628)资助。

GhCPS and GhKS Encoding Gibberellin Biosynthesis Enzymes Involve in Inhibition of Leaf Growth by Mepiquat Chloride in Cotton (Gossypium hirsutum L.)

WANG Li1,2,ZHANG Ming-Cai1,DU Ming-Wei1,TIAN Xiao-Li1,LI Zhao-Hu1,*   

  1. 1 Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, China; 2 College of Life Science, Henan Normal University, Xinxiang 453007, China
  • Received:2014-03-06 Revised:2014-04-16 Published:2014-08-12 Published online:2014-06-03
  • Contact: 李召虎, E-mail: lizhaohu@cau.edu.cn, Tel: 010-62733427

摘要:

室内盆栽欣抗4,在棉花幼苗第3片真叶完全展平时(4叶未展开)叶面喷施甲哌鎓(DPC),研究DPC对棉花幼苗叶片生长的控制与赤霉素(GA)合成早期关键酶柯巴基焦磷酸合酶(CPS)和内根-贝壳杉烯合酶(KS)基因表达的关系。结果表明,DPC处理显著减小棉花幼苗第34叶的叶面积,第4叶叶面积受控制程度较第3叶大;80 mg L–1DPC处理的棉花幼苗第34叶中GA4含量分别于处理后4 d4~6 d显著低于对照;与对照相比,80 mg L–1 DPC处理的棉花幼苗第3叶中GhCPSGhKS表达在处理后1~4 d显著降低,而第4叶中GhCPSGhKS的表达在处理后1~6 d显著降低。由此可见,DPC通过影响GhCPSGhKS的表达,降低内源活性GA4的含量,控制棉花幼苗叶片生长,且较幼嫩叶片对DPC较敏感。

关键词: 棉花, 甲哌鎓, 柯巴基焦磷酸合酶, 内根-贝壳杉烯合酶, 叶面积

Abstract:

Ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) are the key enzymes involved in the early steps of gibberellin (GA) biosynthesis. This paper aimed at elucidating whether the action of mepiquat chloride (DPC) on leaf growth was related to the expression levels of GhCPS and GhKS in cotton seedlings. DPC was foliar applied to seedlings at the 3rd leaf expanded stage of cotton cultivar Xinkang 4 by pot culture. The results showed that DPC significantly decreased the leaf area, and the area of the 4th leaf was decreased more than that of the 3rd leaf. DPC at 80 mg L–1 markedly reduced GA4 content in the 3rd leaf at four days after treatment and in the 4th leaf from four to six days after treatment. The expression levels of GhCPS and GhKS in the 3rd leaf were decreased by DPC from one to four days after treatment, and similar trends were observed in the 4th leaf from one to six days after treatment. All the results suggested that DPC could reduce endogenous GA4 content by downregulating GhCPS and GhKS expressions, leading to a smaller leaf size. Otherwise, the younger leaf was more sensitive to DPC.

Key words: Cotton, Mepiquat chloride, Ent-copalyl diphosphate synthase, Ent-kaurene synthase;Leaf area

[1]Siebert J D, Stewart A M. Influence of plant density on cotton response to mepiquat chloride application. Agron J, 2006, 98: 1634–1639



[2]Ren X, Zhang L, Du M, Eversc J B, Werf W, Tian X, Li Z. Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Res, 2013, 149: 1–10



[3]Reddy V R, Baker D N, Hodges H F. Temperature and mepiquat chloride effects on cotton canopy architecture. Agron J, 1990, 82: 190–195



[4]Reddy A R, Reddy K R, Hodges H F. Mepiquat chloride (PIX) induced changes in photosynthesis and growth of cotton. Plant Growth Regul, 1996, 20: 179–183



[5]Zhao D, Oosterhuis D M. Pix plus and mepiquat chloride effects on physiology, growth, and yield of field-grown cotton. J Plant Growth Regul, 2000, 19: 415–422



[6]Gonias E D, Oosterhuis D M, Bibi A C. Cotton radiation use efficiency response to plant growth regulators. J Agric Sci, 2012, 150: 595–602



[7]Rademacher W. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Mol Biol, 2000, 51: 501–531



[8]Dennis D T, Upper C D, West C A. An enzymic site of inhibition of gibberellin biosynthesis by Amo 1618 and other plant growth retardants. Plant Physiol, 1965, 40: 948–952



[9]Shechter I, West C A. Biosynthesis of Gibberellins. IV. Biosynthesis of cyclic diterpenes from trans-geranylgeranyl pyrophosphate. J Biol Chem, 1969, 244: 3200–3209



[10]Smith M W, Yamaguchi S, Ait-Ali T, Kamiya Y. The first step of gibberellin biosynthesis in pumpkin is catalyzed by at least two copalyl diphosphate synthases encoded by differentially regulated genes. Plant Physiol, 1998, 118: 1411–1419



[11]Silverstone A L, Chang C, Krol E, Sun T P. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J, 1997, 12: 9–19



[12]Koornnef M, van der Veen J H. Induction and analysis of gibberellin-sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet, 1980, 58:257–263



[13]Sun T, Kamiya Y. The Arabidopsis GAl locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell, 1994, 6: 1509–1518



[14]Reddy K R, Kakani V G, Zhao D, Mohammed A R, Gao W. Cotton responses to ultraviolet-B radiation: experimentation and algorithm development. Agr Forest Meteorol, 2003, 120: 249–265



[15]何钟佩. 农作物化学控制实验指导. 北京: 北京农业大学出版社, 1993. pp 36–39



He Z P. Experimental guide of chemical control of crops. Beijing: Beijing Agricultural University Press, 1993. pp 36–39 (in Chinese)



[16]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 2001, 25: 402–408



[17]Barbosa L M, Castro P R C. Comparison between concentrations and application time of mepiquat chloride, chlorocholine chloride and ethephon in cotton (Gossypium hirsutum L. cv. IAC-17). Planta Daninha, 1983, 6: 1–10



[18]Fernández C J, Cothren J T, McInnes K J. Partitioning of biomass in well-watered and water-stressed cotton plants treated with mepiquat chloride. Crop Sci, 1991, 31:1224–1228



[19]陈吟, 张明才, 李召虎. 棉花和玉米对缩节安吸收、转运与分配的特征研究. 中国科技论文在线, http://www.paper.edu.cn/releasepaper/ content/201204-227



Chen Y, Zhang M, Li Z. The absorption and translocation of mepiquat chloride in maize (Zea mays L.) and cotton (Gossypium spp.). Chinese Science Paper, http://www.paper.edu.cn/releasepaper/content/201204-227 (in Chinese with English abstract)



[20]Olszewski N, Sun T P, Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell, 2002, 14: 61–80



[21]Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225–251



[22]Jiang X, Li H, Wang T, Peng C, Wang H, Wu H, Wang X. Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells. Plant J, 2012, 72: 768–780



[23]Ross J J, Murfet I C, Reid J B. Gibberellin mutants. Physiol Plant, 1997, 100: 550–560



[24]Kang S M, Kimb J T, Hamayun M, Hwang I C, Khan A L, Kim Y H, Lee J H, Lee I J. Influence of prohexadione-calcium on growth and gibberellins content of Chinese cabbage grown in alpine region of South Korea. Sci Hortic, 2010, 125: 88–92



[25]Otani M, Meguro S, Gondaira H, Hayashi M, Saito M, Han D S, Inthima P, Supaibulwatana K, Mori S, Jikumaru Y, Kamiya Y, Li T, Niki T, Nishijima T, Koshioka M, Nakano M. Overexpression of the gibberellin 2-oxidase gene from Torenia fournieri induces dwarf phenotypes in the liliaceous monocotyledon Tricyrtis sp. J Plant Physiol, 2013, 170: 1416–1423



[26]Yamaguchi S, Sun T P, Kawaide H, Kamiya Y. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol, 1998, 116: 1271–1278



[27]Ayele B T, Ozga J A, Kurepin L V, Reinecke D M. Developmental and embryo axis regulation of gibberellin biosynthesis during germination and young seedling growth of pea. Plant Physiol, 2006, 142: 1267–1281



[28]Yamaguchi S, Kamiya Y, Sun T P. Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J, 2001, 28:443–453



[29]李晨晨, 侯雷, 尹亮, 赵金凤, 袁守江, 张文会, 李学勇. 水稻极矮突变体s2-47对赤霉素的响应及基因定位研究. 作物学报, 2013, 39: 1766−1774



Li C C, Hou L, Yin L, Zhao J F, Yuan S J, Zhang W H, Li X Y. Gibberellin responsiveness and gene mapping of rice extreme dwarf mutant s2-47. Acta Agron Sin, 2013, 39: 1766−1774 (in Chinese with English abstract)

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665.
[8] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[9] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[10] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[13] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!