作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1579-1584.doi: 10.3724/SP.J.1006.2014.01579
张纪元,张平平,姚金保,杨丹,杨学明,马鸿翔*
ZHANG Ji-Yuan,ZHANG Ping-Ping,YAO Jin-Bao,YANG Dan,YANG Xue-Ming,MA Hong-Xiang*
摘要:
本研究旨在创制遗传背景一致的不同高分子量谷蛋白亚基(HMW-GS)缺失系, 为小麦品质研究和育种提供材料。将软质小麦品种宁麦9号, 用0.4% EMS溶液处理10 000粒种子, 获得3781个M1代单株, 采用“半粒法”对每个株系进行SDS-PAGE鉴定, 从中筛选出299个(7.91%) HMW-GS突变株, 包括HMW-GS缺失和分子量突变两种类型。其中, HMW-GS缺失突变176株, 突变频率为4.65%, 缺失亚基涉及Ax1、Bx7、By8、Dx2和Dy12, 突变频率为0.24%~3.28%; 分子量突变130株, 突变频率为3.44%。将突变体的具胚端种子于温室中繁殖获得M2代, 再次鉴定各株系的HMW-GS, 并经M3代验证, 最终获得Ax1、Dx2、Bx7、By8和Dy12缺失突变体, 及Ax1+By8双缺失突变体。用高效液相色谱(HPLC)分析这些突变体的谷蛋白大聚体(GMP)和谷蛋白/醇溶蛋白(GLU/GLI)比值, 发现不同缺失突变体的GMP含量都有不同程度的降低, 尤以Bx7亚基缺失突变体中GMP含量降幅最大, 高达42%。另外, 不同缺失突变体的谷蛋白总量和GLU/GLI比值也低于对照, Ax1+By8双缺失突变体的GLU/GLI比值最小。
[1]Branlard G, Dardevet M, Saccomano R, Lagoutte F, Gourdon J. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001, 119: 59–67[2]Feiz L, Beecher B S, Martin J M, Giroux J. In plant a mutagenesis determines the functional regions of the wheat puroindoline proteins. Genetics, 2009, 183: 853–860[3]李卫华, 胡志伟, 褚洪雷, 薛芳, 张东海. EMS对小麦产量和农艺性状诱变效应的研究. 种子, 2011, 30(2): 41–44Li W H, Hu Z W, Chu H L, Xue F, Zhang D H. Study on the mutagenic effect of EMS on yield traits and agronomic characters of the wheat. Seed, 2011, 30(2): 41–44 (in Chinese with English abstract)[4]Kuraparthy V, Sood S, Dhaliwal H S, Chhuneja P, Gill B S. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet, 2007, 114: 285–294[5]崔秋华, 许耀奎. EMS处理小麦幼穗的细胞学效应及其对花药培养的影响. 核农学报, 1989, 3: 104–111Cui Q H, Xu Y K. The cytological effect of EMS on spikes and its influence on anther culture of wheat in vitro treatments. J Nucl Agric Sci, 1989, 3: 104–111 (in Chinese with English abstract)[6]赵天祥, 孔秀英, 周荣华, 高双成, 贾继增. EMS诱变六倍体小麦偃展4110的形态突变体鉴定与分析. 中国农业科学, 2009, 42: 755–764Zhao T X, Kong X Y, Zhou R H, Gao S C, Jia J Z. Morphological identification and analysis of EMS mutants from hexaploid wheat cultivar Yanzhan 4110. Sci Agric Sin, 2009, 42: 755–764 (in Chinese with English abstract)[7]徐艳花, 陈锋, 董中东, 崔党群. EMS诱变的普通小麦豫农201突变体库的构建与初步分析, 麦类作物学报, 2010, 30: 625–629Xu Y H, Chen F, Dong Z D, Cui D Q. Construction and Analysis of EMS induced mutant library of hexaploid wheat cultivar Yunong 201. J Triticeae Crops, 2010, 30: 625–629 (in Chinese with English abstract)[8]Liu L, He Z H, Yan J, Zhang Y, Xia X C, Pena R J. Allelic variation at the Glu-1 and Glu-3 loci, presence of 1B.1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica, 2005, 142:197–204[9]Singh N K, Shepherd K W, Cornish G B, A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 1991, 14:203–208[10]Larroque O R, Gianibelli M C, Gimez Sanchez M, MacRitchie F. Procedure for obtaining stable protein extracts of cereal flour and whole meal for size exclusion HPLC analysis. Cereal Chem, 2000, 77: 448–450[11]张鲁军, 焦浈, 史艳芹, 秦广雍. 小麦高分子量麦谷蛋白基因沉默研究进展. 麦类作物学报, 2009, 29: 1129–1133Zhang L J, Jiao Z, Shi Y Q, Qin G Y. Advance in study of gene silencing of wheat HMW-GS. J Triticeae Crops, 2009, 29: 1129–1133 (in Chinese with English abstract)[12]马惠平, 赵永亮. 诱变技术在农作物育种中的应用. 遗传, 1998, 20(4): 48–50Ma H P, Zhao Y L, Yang G Y. Application of induced mutation technology for crop breeding. Hereditas (Beijing), 1998, 20(4): 48–50 (in Chinese with English abstract)[13]王长里, 付晶, 杨学举. EMS诱导小麦突变体的研究及展望. 安徽农业科学, 2008, 36: 8038–8039Wang C L, Fu J, Yang X J. Study and prospect of EMS induction on wheat mutants. J Anhui Agric Sci, 2008, 36: 8038–8039 (in Chinese with English abstract)[14]Feiz L, Martin J M, Giroux M J. Creation and functional analysis of new puroindoline alleles in Triticum aestivum. Theor Appl Genet, 2009, 118: 247–257[15]Slade A J, Fuerstenberg S I, Loeffler D, Steine M N, Facciotti D. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol, 2005, 23: 75–81[16]Ciaffi M, Tozzi L, Lafiandra D. Relationship between flour composition determined by size-exclusion high-performance liquid chromatography and dough rheological parameters. Cereal Chem, 1996, 73: 346–351[17]Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheat: I. Effect of variation in the quantity and size distribution of polymeric protein. J Cereal Sci, 1993, 18: 23–41[18]张平平, 肖永贵, 刘建军, 马鸿翔, 何中虎. SDS不溶性谷蛋白大聚体含量与和面仪参数的关系. 作物学报, 2008, 34: 1074–1079Zhang P P, Xiao Y G, Liu J J, Ma H X, He Z H. Relationship between SDS-unextractable glutenin polymeric protein and mixograph parameters. Acta Agron Sin, 2008, 34:1074–1079 (in Chinese with English abstract)[19]Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheats. Effects of variation in the quantity and size distribution of polymeric protein. Cereal Sci, 1993, 18: 23–41[20]Huang D Y, Khan K. Characterization and quantification of native glutenin aggregates by multistacking sodium dodecyl sulfate polyaerylamide gelelectrophoresis (SDS-PAGE) procedures. Cereal Chem, 1997, 74: 229–234[21]Zhu J, Khan K. Quantitative variation of HMW glutenin subunits from hard red spring wheats grown in different environments. Cereal Chem, 2002, 79: 783–786[22]Weegels P L, Hamer R J, Scholfield J D. Functional properties of low Mr wheat proteins: effects on composition of the glutenin macropolymer during dough mixing and resting. Cereal Sci, 1997, 25: 165–173[23]Weegels P L, Hamer R J, Scholfield J D. Functional properties of wheat glutenin. Cereal Sci, 1996, 23: l–18[24]Weegels P L, Flissebaalje T, Hamer R. Factors affecting the glutenin macropolymer. Cereal Chem, 1994, 71: 308–309 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[6] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[9] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[10] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[11] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[12] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[13] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[14] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[15] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
|