欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1579-1584.doi: 10.3724/SP.J.1006.2014.01579

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

以EMS诱变创制软质小麦宁麦9号高分子量谷蛋白亚基突变体

张纪元,张平平,姚金保,杨丹,杨学明,马鸿翔*   

  1. 江苏省农业科学院 / 江苏省农业生物学重点实验室, 江苏南京 210014
  • 收稿日期:2013-11-25 修回日期:2014-06-16 出版日期:2014-09-12 网络出版日期:2014-06-27
  • 通讯作者: 马鸿翔, E-mail: hxma@jaas.ac.cn
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-3), 国家自然科学基金项目(31101146), 科技部农业科技成果转化基金(2012C1001009), 江苏省科技支撑项目(BE2013439)和江苏省农业自主创新专项(cx132021)资助。

EMS Induced HMW-GS Mutants from Soft Wheat Ningmai 9

ZHANG Ji-Yuan,ZHANG Ping-Ping,YAO Jin-Bao,YANG Dan,YANG Xue-Ming,MA Hong-Xiang*   

  1. Jiangsu Provincial Key Laboratory of Agrobiology / Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2013-11-25 Revised:2014-06-16 Published:2014-09-12 Published online:2014-06-27
  • Contact: 马鸿翔, E-mail: hxma@jaas.ac.cn

摘要:

本研究旨在创制遗传背景一致的不同高分子量谷蛋白亚基(HMW-GS)缺失系, 为小麦品质研究和育种提供材料。将软质小麦品种宁麦9号, 用0.4% EMS溶液处理10 000粒种子, 获得3781个M1代单株, 采用“半粒法”对每个株系进行SDS-PAGE鉴定, 从中筛选出299个(7.91%) HMW-GS突变株, 包括HMW-GS缺失和分子量突变两种类型。其中, HMW-GS缺失突变176株, 突变频率为4.65%, 缺失亚基涉及Ax1、Bx7、By8、Dx2和Dy12, 突变频率为0.24%~3.28%; 分子量突变130株, 突变频率为3.44%。将突变体的具胚端种子于温室中繁殖获得M2代, 再次鉴定各株系的HMW-GS, 并经M3代验证, 最终获得Ax1、Dx2、Bx7、By8和Dy12缺失突变体, 及Ax1+By8双缺失突变体。用高效液相色谱(HPLC)分析这些突变体的谷蛋白大聚体(GMP)和谷蛋白/醇溶蛋白(GLU/GLI)比值, 发现不同缺失突变体的GMP含量都有不同程度的降低, 尤以Bx7亚基缺失突变体中GMP含量降幅最大, 高达42%。另外, 不同缺失突变体的谷蛋白总量和GLU/GLI比值也低于对照, Ax1+By8双缺失突变体的GLU/GLI比值最小。

关键词: 小麦, 甲基磺酸乙酯, 高分子量谷蛋白亚基, 谷蛋白大聚体

Abstract:

The objective of this study was to create a series of deletion lines of high molecular weight-glutenin subunit (HMW-GS) in similar backgrounds for wheat quality research and breeding. A total of 3781 M1 plants of Ningmai 9 (a soft wheat cultivar) were obtained from 10000 seeds induced by 0.4% ethyl methane sulfonate (EMS). The HMW-GS compositions of these plants were identified via SDS-PAGE using half seed. Two hundred and ninety-nine lines with a mutation percentage of 7.91% were found to be HMW-GS mutants, including HMW-GS deletion and molecular weight mutation. Among them, 176 lines were HMW-GS deletion mutants, with a mutation percentage of 4.65% containing subunits Ax1, Bx7, By8, Dx2, and Dy12, with the mutation percentages ranging from 0.24% to 3.28%. The mutants of molecular weight were 130 lines with a mutation percentage of 3.44%. Each of the half M1 seed with embryo was used to produce M2 generation in greenhouse. Homozygous deletion lines of HMW-GS Ax1, Dx2, Bx7, By8, Dy12, and Ax1+ By8 were detected using SDS-PAGE and confirmed in M3 generation. The content of glutenin macropolymer (GMP) and the ratio of glutenin-to-gliadin (GLU/GLI) ratio were determined using high performance liquid chromatography (HPLC). The results showed that all the deletion mutants had lower GMP content than Ningmai 9, particularly, the Bx7 deletion line had the reduced GMP content of 42%. The GLU/GLI ratio of the deletion lines was also smaller than that of Ningmai 9, and the lowest GLU/GLI ratio was found in Ax1+ By8 deletion line.

Key words: Wheat, EMS, High molecular weight glutenin subunit, Glutenin macropolymer

[1]Branlard G, Dardevet M, Saccomano R, Lagoutte F, Gourdon J. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001, 119: 59–67



[2]Feiz L, Beecher B S, Martin J M, Giroux J. In plant a mutagenesis determines the functional regions of the wheat puroindoline proteins. Genetics, 2009, 183: 853–860



[3]李卫华, 胡志伟, 褚洪雷, 薛芳, 张东海. EMS对小麦产量和农艺性状诱变效应的研究. 种子, 2011, 30(2): 41–44



Li W H, Hu Z W, Chu H L, Xue F, Zhang D H. Study on the mutagenic effect of EMS on yield traits and agronomic characters of the wheat. Seed, 2011, 30(2): 41–44 (in Chinese with English abstract)



[4]Kuraparthy V, Sood S, Dhaliwal H S, Chhuneja P, Gill B S. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet, 2007, 114: 285–294



[5]崔秋华, 许耀奎. EMS处理小麦幼穗的细胞学效应及其对花药培养的影响. 核农学报, 1989, 3: 104–111



Cui Q H, Xu Y K. The cytological effect of EMS on spikes and its influence on anther culture of wheat in vitro treatments. J Nucl Agric Sci, 1989, 3: 104–111 (in Chinese with English abstract)



[6]赵天祥, 孔秀英, 周荣华, 高双成, 贾继增. EMS诱变六倍体小麦偃展4110的形态突变体鉴定与分析. 中国农业科学, 2009, 42: 755–764



Zhao T X, Kong X Y, Zhou R H, Gao S C, Jia J Z. Morphological identification and analysis of EMS mutants from hexaploid wheat cultivar Yanzhan 4110. Sci Agric Sin, 2009, 42: 755–764 (in Chinese with English abstract)



[7]徐艳花, 陈锋, 董中东, 崔党群. EMS诱变的普通小麦豫农201突变体库的构建与初步分析, 麦类作物学报, 2010, 30: 625–629



Xu Y H, Chen F, Dong Z D, Cui D Q. Construction and Analysis of EMS induced mutant library of hexaploid wheat cultivar Yunong 201. J Triticeae Crops, 2010, 30: 625–629 (in Chinese with English abstract)



[8]Liu L, He Z H, Yan J, Zhang Y, Xia X C, Pena R J. Allelic variation at the Glu-1 and Glu-3 loci, presence of 1B.1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica, 2005, 142:197–204



[9]Singh N K, Shepherd K W, Cornish G B, A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 1991, 14:203–208



[10]Larroque O R, Gianibelli M C, Gimez Sanchez M, MacRitchie F. Procedure for obtaining stable protein extracts of cereal flour and whole meal for size exclusion HPLC analysis. Cereal Chem, 2000, 77: 448–450



[11]张鲁军, 焦浈, 史艳芹, 秦广雍. 小麦高分子量麦谷蛋白基因沉默研究进展. 麦类作物学报, 2009, 29: 1129–1133



Zhang L J, Jiao Z, Shi Y Q, Qin G Y. Advance in study of gene silencing of wheat HMW-GS. J Triticeae Crops, 2009, 29: 1129–1133 (in Chinese with English abstract)



[12]马惠平, 赵永亮. 诱变技术在农作物育种中的应用. 遗传, 1998, 20(4): 48–50



Ma H P, Zhao Y L, Yang G Y. Application of induced mutation technology for crop breeding. Hereditas (Beijing), 1998, 20(4): 48–50 (in Chinese with English abstract)



[13]王长里, 付晶, 杨学举. EMS诱导小麦突变体的研究及展望. 安徽农业科学, 2008, 36: 8038–8039



Wang C L, Fu J, Yang X J. Study and prospect of EMS induction on wheat mutants. J Anhui Agric Sci, 2008, 36: 8038–8039 (in Chinese with English abstract)



[14]Feiz L, Martin J M, Giroux M J. Creation and functional analysis of new puroindoline alleles in Triticum aestivum. Theor Appl Genet, 2009, 118: 247–257



[15]Slade A J, Fuerstenberg S I, Loeffler D, Steine M N, Facciotti D. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol, 2005, 23: 75–81



[16]Ciaffi M, Tozzi L, Lafiandra D. Relationship between flour composition determined by size-exclusion high-performance liquid chromatography and dough rheological parameters. Cereal Chem, 1996, 73: 346–351



[17]Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheat: I. Effect of variation in the quantity and size distribution of polymeric protein. J Cereal Sci, 1993, 18: 23–41



[18]张平平, 肖永贵, 刘建军, 马鸿翔, 何中虎. SDS不溶性谷蛋白大聚体含量与和面仪参数的关系. 作物学报, 2008, 34: 1074–1079



Zhang P P, Xiao Y G, Liu J J, Ma H X, He Z H. Relationship between SDS-unextractable glutenin polymeric protein and mixograph parameters. Acta Agron Sin, 2008, 34:1074–1079 (in Chinese with English abstract)



[19]Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheats. Effects of variation in the quantity and size distribution of polymeric protein. Cereal Sci, 1993, 18: 23–41



[20]Huang D Y, Khan K. Characterization and quantification of native glutenin aggregates by multistacking sodium dodecyl sulfate polyaerylamide gelelectrophoresis (SDS-PAGE) procedures. Cereal Chem, 1997, 74: 229–234



[21]Zhu J, Khan K. Quantitative variation of HMW glutenin subunits from hard red spring wheats grown in different environments. Cereal Chem, 2002, 79: 783–786



[22]Weegels P L, Hamer R J, Scholfield J D. Functional properties of low Mr wheat proteins: effects on composition of the glutenin macropolymer during dough mixing and resting. Cereal Sci, 1997, 25: 165–173



[23]Weegels P L, Hamer R J, Scholfield J D. Functional properties of wheat glutenin. Cereal Sci, 1996, 23: l–18



[24]Weegels P L, Flissebaalje T, Hamer R. Factors affecting the glutenin macropolymer. Cereal Chem, 1994, 71: 308–309

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!