作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1585-1594.doi: 10.3724/SP.J.1006.2014.01585
霍冬英1,2,郑炜君1,李盼松1,2,徐兆师2,周永斌1,2,陈明2,马有志2,闵东红1,2,*,张小红1,2,*
HUO Dong-Ying1,2,ZHENG Wei-Jun1,LI Pan-Song1,2,XU Zhao-Shi2,ZHOU Yong-Bin1,2,CHEN Ming2,MA You-Zhi2,MIN Dong-Hong1,2,*,ZHANG Xiao-Hong1,2,*
摘要:
蛋白参与细胞周期调控、细胞凋亡及信号转导等多种生命活动对维持植物正常生长发育和介导非生阿物胁迫响应等过程发挥重要作用。谷子具有显著的耐旱耐瘠薄等特性本研究根据谷子转录组分析结果从个家族成员中鉴定出个在干旱胁迫下表达量上调的基因根据序列相似性将其分为类同一类基因具有相似的内含子外显子结构染色体定位分析发现这些基因分别分布在谷子的条染色体上其中第条染色体上含基因最多有个。结构域分析结果表明个蛋白均含保守的结构域而端含、、、、和等结构域。启动子元件分析表明谷子个基因均含逆境应答元件其中和元件的数量最多个说明这些基因对干旱应答反应可能主要受、转录因子调控。转录组分析结果表明基因对干旱胁迫的响应远远高于其他成员对干旱、高盐、、和都有响应亚细胞定位结果显示蛋白定位在细胞核中。本研究为进一步深入了解基因的功能提供了依据。F-box蛋白参与细胞周期调控、细胞凋亡及信号转导等多种生命活动, 对维持植物正常生长发育a和介导非生阿物胁迫响应等过程发挥重要作用。谷子具有显著的耐旱耐瘠薄等特性, 本研究根据谷子转录组分析结果, 从525个F-box家族成员中鉴定出19个在干旱胁迫下表达量上调的F-box基因; 根据序列相似性将其分为6类, 同一类基因具有相似的内含子-外显子结构; 染色体定位分析发现, 这些基因分别分布在谷子的8条染色体上, 其中, 第2条染色体上含F-box基因最多, 有6个。结构域分析结果表明, 19个F-box蛋白均含保守的F-box结构域, 而C端含FBD、WD40、FBA、ZnF、Kelch和LRR等结构域。启动子元件分析表明, 谷子19个F-box基因均含逆境应答元件, 其中, MYB和MYC元件的数量最多(9~78个), 说明这些基因对干旱应答反应可能主要受MYB、MYC转录因子调控。转录组分析结果表明, SiF-box18基因对干旱胁迫的响应远远高于其他F-box成员, 对干旱、高盐、ABA、SA和JA都有响应; 亚细胞定位结果显示, SiF-box18蛋白定位在细胞核中。本研究为进一步深入了解SiF-box18基因的功能提供了依据。
[1]Verslues P E, Agarwal M, Katiyar A S, Zhu J, Zhu J K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006, 45: 523–539[2]Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S. The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol, 2012, 196: 13–28[3]Jackson P K, Eldridge A G, Freed E, Furstenthal L, Hsu J Y, Kaiser B K, Reimann J D. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol, 2000, 10: 429–439[4]Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol, 2004, 5: 739–751[5]Ho M S, Tsai P I, Chien C T. F-box proteins: the key to protein degradation. J Biomed Sci, 2006, 13: 181–191[6]Bai C, Richman R, Elledge S J. Human cyclin F. EMBO J, 1994, 13: 6087–6098[7]Levin J Z, Meyerowitz E M. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell, 1995, 7: 529–548[8]Hepworth S R, Klenz J E, Haughn G W. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta, 2006, 223:769–778[9]Sasaki K, Yamaguchi H, Aida R, Shikata M, Abe T, Ohtsubo N. Mutation in Torenia fournieri Lind: UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation. Plant J, 2012, 71: 1002–1014[10]Wang Z, Chen J, Weng L, Li X, Cao X, Hu X, Luo D, Yang J. Multiple components are integrated to determine leaf complexity in Lotus japonicus. J Integr Plant Biol, 2013, 55: 419–433[11]Nelson D C, Lasswell J, Rogg L E, Cohen M A, Bartel B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell, 2000, 101: 331–340[12]Imaizumi T, Schultz T F, Harmon F G, Ho L A, Kay S A. FKF1F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293–297[13]Tomoyuki T, Yuuki N, Haruna T, Yasunobu O, Yuji M, Yumiko Y, Tomohiro K. LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J, 2011, 67: 608–621[14]Suetsugu N, Wada M. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome. Plant Cell Physiol, 2013, 54: 8–23[15]Lai Z, Ma W, Han B, Liang L, Zhang Y, Hong G, Xue Y. An F-box gene linked to the self-incompatibility locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol, 2002, 50: 29–42[16]Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck N R, Iezzoni A F, Tao R. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J, 2004, 39: 573–586[17]Hidenori S, Hiroyuki K, Mai M. Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae. Sex Plant Reprod, 2010, 23: 39–43[18]Wu J, Li M, Li T. Genetic Features of the Spontaneous Self-Compatible Mutant, ‘Jin Zhui’ (Pyrus bretschneideri Rehd.). PLoS One, 2013, 8, doi: 10.1371[19]Gray W M, Kepinski S, Rouse D, Leyser O, Estelle M. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature, 2001, 414: 271–276[20]Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 446–451[21]Yu H, Moss B L, Jang S S, Prigge M, Klavins E, Nemhauser J L, Estelle M. Mutations in the TIR1 auxin receptor that increase affinity for auxin/indole-3-acetic acid proteins result in auxin hypersensitivity. Plant Physiol, 2013, 162: 295–303[22]Tromas A, Paque S, Stierlé V, Quettier A L, Muller P, Lechner E, Genschik P, Perrot-Rechenmann C. Auxin-Binding Protein 1 is a negative regulator of the SCF TIR1/AFB pathway. Nat Commun, 2013, 4: 2496[23]Guo H, Ecker J R. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. 2003, Cell, 115: 667–677[24]Iqbal N, Trivellini A, Masood A, Ferrante A, Khan N A. Current understanding on ethylene signaling in plants: The influence of nutrient availability. Plant Physiol Biochem, 2013, 73, 128–138[25]Itoh H, Matsuoka M, Steber C M. A role for the ubiquitin-26Sproteasome pathway in gibberellin signaling. Trends Plant Sci, 2003, 8: 492–497[26]Ariizumi T, Hauvermale A L, Nelson S K, Hanada A, Yamaguchi S, Steber C M. Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling. Plant Physiol, 2013, 162: 2125–2139[27]Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G, COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280: 1091–1094[28]Devoto A, Ellis C, Magusin A, Chang H S, Chilcott C, Zhu T, Turner J G. Expression profiling reveals COI1 to be a key regulator of genes involved in wound-and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol, 2005, 58: 497–513[29]Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S, Kamiya Y, Ohta H, Shirasu K. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol, 2013, 163, 291–304[30]Zhang Y, Xu W, Li Z, Deng X W, Wu W, Xue Y. F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol, 2008, 148:2121–2133[31]Bu Q, Lü T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim T H, Schroeder J I, Huq E. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol, 2013, doi: 10.1104[32]Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. DOG 1.0: illustrator of protein domain structures cell research. Cell Res, 2009, 19: 271–273[33]Yang S, Zhang X, Yue J X, Tian D, Chen J Q: Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genom, 2008, 280: 187–198[34]Liu P, Xu Z S, Pan-Pan L, Hu D, Chen M, Li L C, Ma Y Z. A wheat plasma membrane-localized PI4K gene possessing threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. J Exp Bot, 2013, 64: 2915–2927[35]Jin J, Cardozo T, Lovering R C, Elledge S J, Pagano M, Harper J W. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev, 2004, 18: 2573–2580[36]Gagne J M, Downes B P, Shiu S H, Durski A M, Vierstra R D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA, 2002, 99: 11519–11524[37]Kuroda H, Takahashi N, Shimada H, Seki M, Shinozaki K, Matsui M. Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol, 2002, 43: 1073–1085[38]Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi A K, Khurana J P. F-box proteins in rice. Genomewide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol, 2007, 143: 1467–1483[39]Jia F, Wu B, Li H, Huang J, Zheng C. Genome-wide identification and characterization of F-box family in maize. Mol Genet Genomics, 2013, 288: 559–577[40]Andrade M A, Perez-Iratxeta C, Ponting C P. Protein repeats: structures, functions, and evolution. J Struct Biol, 2001, 134: 117–131[41]Smith T F, Gaitatzes C, Saxena K, Neer E J. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci, 1999, 24: 181–185[42]Craig K L, Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol, 1999, 72: 299–328[43]Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch T. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J Exp Bot, 2011, 62: 5547–5560 |
[1] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[2] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[3] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[4] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[5] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[6] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[7] | 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321. |
[8] | 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062. |
[9] | 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127. |
[10] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[11] | 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711. |
[12] | 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512. |
[13] | 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604. |
[14] | 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638. |
[15] | 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127. |
|