[1]Verslues P E, Agarwal M, Katiyar A S, Zhu J, Zhu J K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006, 45: 523–539
[2]Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S. The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol, 2012, 196: 13–28
[3]Jackson P K, Eldridge A G, Freed E, Furstenthal L, Hsu J Y, Kaiser B K, Reimann J D. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol, 2000, 10: 429–439
[4]Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol, 2004, 5: 739–751
[5]Ho M S, Tsai P I, Chien C T. F-box proteins: the key to protein degradation. J Biomed Sci, 2006, 13: 181–191
[6]Bai C, Richman R, Elledge S J. Human cyclin F. EMBO J, 1994, 13: 6087–6098
[7]Levin J Z, Meyerowitz E M. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell, 1995, 7: 529–548
[8]Hepworth S R, Klenz J E, Haughn G W. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta, 2006, 223:769–778
[9]Sasaki K, Yamaguchi H, Aida R, Shikata M, Abe T, Ohtsubo N. Mutation in Torenia fournieri Lind: UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation. Plant J, 2012, 71: 1002–1014
[10]Wang Z, Chen J, Weng L, Li X, Cao X, Hu X, Luo D, Yang J. Multiple components are integrated to determine leaf complexity in Lotus japonicus. J Integr Plant Biol, 2013, 55: 419–433
[11]Nelson D C, Lasswell J, Rogg L E, Cohen M A, Bartel B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell, 2000, 101: 331–340
[12]Imaizumi T, Schultz T F, Harmon F G, Ho L A, Kay S A. FKF1F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293–297
[13]Tomoyuki T, Yuuki N, Haruna T, Yasunobu O, Yuji M, Yumiko Y, Tomohiro K. LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J, 2011, 67: 608–621
[14]Suetsugu N, Wada M. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome. Plant Cell Physiol, 2013, 54: 8–23
[15]Lai Z, Ma W, Han B, Liang L, Zhang Y, Hong G, Xue Y. An F-box gene linked to the self-incompatibility locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol, 2002, 50: 29–42
[16]Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck N R, Iezzoni A F, Tao R. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J, 2004, 39: 573–586
[17]Hidenori S, Hiroyuki K, Mai M. Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae. Sex Plant Reprod, 2010, 23: 39–43
[18]Wu J, Li M, Li T. Genetic Features of the Spontaneous Self-Compatible Mutant, ‘Jin Zhui’ (Pyrus bretschneideri Rehd.). PLoS One, 2013, 8, doi: 10.1371
[19]Gray W M, Kepinski S, Rouse D, Leyser O, Estelle M. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature, 2001, 414: 271–276
[20]Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 446–451
[21]Yu H, Moss B L, Jang S S, Prigge M, Klavins E, Nemhauser J L, Estelle M. Mutations in the TIR1 auxin receptor that increase affinity for auxin/indole-3-acetic acid proteins result in auxin hypersensitivity. Plant Physiol, 2013, 162: 295–303
[22]Tromas A, Paque S, Stierlé V, Quettier A L, Muller P, Lechner E, Genschik P, Perrot-Rechenmann C. Auxin-Binding Protein 1 is a negative regulator of the SCF TIR1/AFB pathway. Nat Commun, 2013, 4: 2496
[23]Guo H, Ecker J R. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. 2003, Cell, 115: 667–677
[24]Iqbal N, Trivellini A, Masood A, Ferrante A, Khan N A. Current understanding on ethylene signaling in plants: The influence of nutrient availability. Plant Physiol Biochem, 2013, 73, 128–138
[25]Itoh H, Matsuoka M, Steber C M. A role for the ubiquitin-26Sproteasome pathway in gibberellin signaling. Trends Plant Sci, 2003, 8: 492–497
[26]Ariizumi T, Hauvermale A L, Nelson S K, Hanada A, Yamaguchi S, Steber C M. Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling. Plant Physiol, 2013, 162: 2125–2139
[27]Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G, COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280: 1091–1094
[28]Devoto A, Ellis C, Magusin A, Chang H S, Chilcott C, Zhu T, Turner J G. Expression profiling reveals COI1 to be a key regulator of genes involved in wound-and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol, 2005, 58: 497–513
[29]Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S, Kamiya Y, Ohta H, Shirasu K. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol, 2013, 163, 291–304
[30]Zhang Y, Xu W, Li Z, Deng X W, Wu W, Xue Y. F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol, 2008, 148:2121–2133
[31]Bu Q, Lü T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim T H, Schroeder J I, Huq E. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol, 2013, doi: 10.1104
[32]Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. DOG 1.0: illustrator of protein domain structures cell research. Cell Res, 2009, 19: 271–273
[33]Yang S, Zhang X, Yue J X, Tian D, Chen J Q: Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genom, 2008, 280: 187–198
[34]Liu P, Xu Z S, Pan-Pan L, Hu D, Chen M, Li L C, Ma Y Z. A wheat plasma membrane-localized PI4K gene possessing threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. J Exp Bot, 2013, 64: 2915–2927
[35]Jin J, Cardozo T, Lovering R C, Elledge S J, Pagano M, Harper J W. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev, 2004, 18: 2573–2580
[36]Gagne J M, Downes B P, Shiu S H, Durski A M, Vierstra R D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA, 2002, 99: 11519–11524
[37]Kuroda H, Takahashi N, Shimada H, Seki M, Shinozaki K, Matsui M. Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol, 2002, 43: 1073–1085
[38]Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi A K, Khurana J P. F-box proteins in rice. Genomewide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol, 2007, 143: 1467–1483
[39]Jia F, Wu B, Li H, Huang J, Zheng C. Genome-wide identification and characterization of F-box family in maize. Mol Genet Genomics, 2013, 288: 559–577
[40]Andrade M A, Perez-Iratxeta C, Ponting C P. Protein repeats: structures, functions, and evolution. J Struct Biol, 2001, 134: 117–131
[41]Smith T F, Gaitatzes C, Saxena K, Neer E J. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci, 1999, 24: 181–185
[42]Craig K L, Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol, 1999, 72: 299–328
[43]Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch T. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J Exp Bot, 2011, 62: 5547–5560 |