欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (11): 1905-1913.doi: 10.3724/SP.J.1006.2014.01905

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用病毒介导基因沉默方法研究小麦抗光氧化相关基因

陈坤梅1,2,李宏伟2,*,林凡云2,陈耀锋1,*,李滨2,郑琪2,李振声2   

  1. 1 西北农林科技大学农学院, 陕西杨凌 712100; 2中国科学院遗传与发育生物学研究所, 植物细胞与染色体工程国家重点实验室, 北京 100101
  • 收稿日期:2014-03-03 修回日期:2014-09-16 出版日期:2014-11-12 网络出版日期:2014-10-01
  • 基金资助:

    本研究由国家自然科学基金项目(31371609)资助。

Functional Analysis of Photo-Oxidative Stress Responsive Genes in Wheat Using Virus-Induced Gene Silencing System

CHEN Kun-Mei1,2,LI Hong-Wei2,*,LIN Fan-Yun2,CHEN Yao-Feng1,*, LI Bin2, ZHENG Qi2,LI Zhen-Sheng2   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2014-03-03 Revised:2014-09-16 Published:2014-11-12 Published online:2014-10-01

摘要:

为了鉴定可能的小麦抗光氧化基因,利用大麦条斑病毒(barley stripe mosaic virus,BSMV)介导的基因沉默(virus-induced gene silencing, VIGS)系统,对6个小偃54响应强光的基因进行了沉默表达研究。以BSMV:GFP植株为对照,分析了这些基因的减量表达植株在低温强光、DCMU、MV及H2O2等处理下的PSI最大光化学效率(Fv/Fm)和光合性能指数(P.I.)、MDA含量及整株生物量变化。结果显示,Ta23008Ta92165均参与小麦对低温强光、DCMU、MV和H2O2等胁迫的响应过程;Ta106078参与小麦对DCMU、MV和H2O2等胁迫的响应过程;Ta27787参与小麦对低温强光、DCMU和H2O2等胁迫的响应过程;Ta24695参与小麦对低温强光和H2O2胁迫的响应过程;而Ta119251仅参与小麦对DCMU的响应过程。此外,Ta23008Ta92165Ta106078Ta119251四个基因被抑制表达后,其转化株系的生物量比对照显著降低,推测其可能参与调控小麦生物量的积累。

关键词: 小麦, 大麦条斑病毒(BSMV), 病毒介导的基因沉默, 基因功能, 光氧化

Abstract:

Functional analysis of photo-oxidative stress responsive genes in wheat (Triticum aestivum L.) may benefit wheat improvement for high radiation use efficiency. A Chinese variety Xiaoyan 54 developed from distant hybridization between common wheat (T. aestivum, 2n=42) and tall wheatgrass (Thinopyrum ponticum, 2n=70) shows significant tolerance to high light induced photo-oxidative stress. Based on previous transcriptome analysis of Xiaoyan 54 in response to high light stress, six genes were selected in this study to assess their possible roles in photo-oxidative stress response using barley stripe mosaic virus (BSMV) mediated virus-induced gene silencing (VIGS) system in Xiaoyan 54. The BSMV induced silencing of the targeted genes together with the BSMV:GFP control plants were exposed to low temperature and high lightII (Fv/Fm), the photosynthetic performance index (P.I.), malondialdehyde (MDA) content, and biomass were evaluated. The results showed that Ta23008 and Ta92165 were involved in the responses of wheat to LTHL, DCMU, MV, and H2O2, respectively. Ta106078 was responsible for wheat tolerance to DCMU, MV, and H2O2 while Ta27787 was responsible for LTHL, DCMU, and H2O2 stress. Ta24695 participated in the response of wheat to both LTHL and H2O2. However, Ta119251 seemed to be only responsible for the DCMU stress in wheat. Additionally, four genes, Ta23008, Ta92165, Ta106078 and Ta119251, were likely to regulate biomass accumulation because the biomass was significantly reduced when they were silenced in wheat. These results provided new hints toward understanding the molecular mechanism of tolerance to photo-oxidative stress in Xiaoyan 54.(LTHL), N-(3,4-dichlorophenyl)- N’,N’-dimethylurea(DCMU), methylviologen (MV), and hydrogen peroxide (H2O2) stress, respectively. The maximum photochemical efficiency of photosystem

Key words: Triticum aestivum, Barley stripe mosaic virus, VIGS, Genomic function, Photo-oxidative stress

[1]刘道宏. 高光效育种. 湖北农业科学, 1978, (6): 35–40



   Liu D H. High photosynthesis efficiency breeding. Hubei Agric Sci, 1978, (6): 35–40 (in Chinese)



[2]吴琼, 许为钢, 李艳, 齐学礼, 胡琳, 张磊, 韩琳琳. 田间条件下转玉米C4型PEPC基因小麦的光合生理特性. 作物学报, 2011, 37: 2046–2052



   Wu Q, Xu W G, Li Y, Qi X L, Hu L, Zhang L, Han L L. Physiological characteristics of photosynthesis in transgenic wheat with maize C4-PEPC gene under field conditions. Acta Agron Sin, 2011, 37: 2046–2052 (in Chinese with English abstract)



[3]程建峰, 沈允钢. 作物高光效之管见. 作物学报, 2010, 36: 1235–1247



   Cheng J F, Shen Y G. My humble opinions on high photosynthetic efficiency of crop. Acta Agron Sin, 2010, 36: 1235–1247 (in Chinese with English abstract)



[4]Unver T, Budak H. Virus-induced gene silencing, a post transcriptional gene silencing method. Int J Plant Genomics, 2009, 2009: 1–8



[5]Holzberg S, Brosio P, Gross C, Pogue G P. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J, 2002, 30: 315–327



[6]Scofield S R, Huang L, Brandt A S, Gill B S. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol, 2005, 138: 2165–2173



[7]Eck L V, Schultz T, Leach J E, Scofield S R, Peairs F B, Botha A M, Lapitan N L V. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. Plant Biotech J, 2010, 8: 1023–1032



[8]Wang G F, Wei X N, Fan R C, Zhou H B, Wang X P, Yu C M, Dong L L, Dong Z Y, Wang X J, Kang Z S, Ling H Q, Shen Q H, Wang D W, Zhang X Q. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytol, 2011, 191: 418–431



[9]Bennypaul H S, Mutti J S, Rustgi S, Kumar N, Okubara P A, Gill K S. Virus-induced gene silencing (VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat. Funct Integr Genomics, 2012, 12: 143–156



[10]Campbell J, Huang L. Silencing of multiple genes in wheat using barley stripe mosaic virus. J Biotech Res, 2010, 2: 12–20



[11]王肃威, 许长成, 白克智, 张其德, 李良璧, 匡廷云, 李继云, 李振声. 两个不同基因型小麦光抑制特性的比较. 植物学报, 2000, 42: 1300–1303



    Wang S W, Xu C C, Bai K Z, Zhang Q D, Li L B, Kuang T Y, Li J Y, Li Z S. Comparative study on photoinhibition between two wheat genotypes. Acta Bot Sin, 2000, 42: 1300–1303 (in Chinese with English abstract)



[12]Yang X H, Chen X Y, Ge Q Y, Li B, Tong Y P, Zhang A M, Li Z S, Kuang T Y, Lu C M. Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Sci, 2006, 171: 389–397



[13]Yang X H, Chen X Y, Ge Q Y, Li B, Tong Y P, Li Z S, Kuang T Y, Lu C M. Characterization of photosynthesis of flag leaves in a wheat hybrid and its parents grown under field conditions. J Plant Physiol, 2007, 164: 318–326



[14]李宏伟, 李滨, 郑琪, 李振声. 小麦幼苗从低光到强光适应过程中光合和抗氧化酶变化. 作物学报, 2010, 36: 449–456



    Li H W, Li B, Zheng Q, Li Z S. Variation in photosynthetic traits and antioxidant enzyme activities of wheat seedlings transferred from low to high light growth condition. Acta Agron Sin, 2010, 36: 449–456 (in Chinese with English abstract)



[15]Li H W, Tong Y P, Li B, Jing R L, Lu C M, Li Z S. Genetic analysis of tolerance to photo-oxidative stress induced by high light in winter wheat (Triticum aestivum L.). J Genet Genomics, 2010, 37: 399–412



[16]Loreto F, Velikova V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol, 2001, 127: 1781–1787



[17]Hodges D M, DeLong J M, Forney C F, Prange R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604–611



[18]陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用. 浙江农业学报, 2006, 18(1): 51–55



    Chen J M, Yu X P, Cheng J A. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses. Acta Agric Zhejiangensis, 2006, 18(1): 51–55 (in Chinese with English abstract)



[19]Appenroth K J, Stöckel J, Srivastava A, Strasser R J. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut, 2001, 115: 49–64



[20]Van Heerden P D R, Tsimilli-Michael M, Krüger G H J, Strasser R J. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiol Plant, 2003, 117: 476–491



[21]Krishnaswamy S, Verma S, Rahman M H, Kav N N V. Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol, 2011, 75: 107–127



[22]Zhang G Y, Chen M, Li L C, Xu Z S, Chen X P, Guo J M, Ma Y Z. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781–3796



[23]Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Yamaguchi S, Kamiya Y, Okada K, Nishimura T, Koshiba T, Yokota T, Kamada H, Satoh S. Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proc Natl Acad Sci USA, 2011, 108: 16128–16132



[24]Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106–111



[25]Wellmer F, Kircher S, Rügner A, Frohnmeyer H, Schäfer E, Harter K. Phosphorylation of the parsley bZIP transcription factor CPRF2 is regulated by light. J Biol Chem, 1999, 274: 29476–29482



[26]Strathmann A, Kuhlmann M, Heinekamp T, Dröge-Laser W. BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant J, 2001, 28: 397–408



[27]Chen R M, Ni Z F, Nie X L, Qin Y X, Dong G Q, Sun Q X. Isolation and characterization of genes encoding Myb transcription factor in wheat (Triticum aestivem L.). Plant Sci, 2005, 169: 1146–1154



[28]Lee T G, Jang C S, Kim J Y, Kim D S, Park J H, Kim D Y, Seo Y W. A Myb transcription factor (TaMyb1) from wheat roots is expressed during hypoxia: roles in response to the oxygen concentration in root environment and abiotic stresses. Physiol Plant, 2007, 129: 375–385



[29]杨文杰, 杜海, 方芳, 杨婉身, 吴燕民, 唐益雄. 大豆两个MYB转录因子基因的克隆及表达分析. 中国农业科学, 2008, 41: 961–970



    Yang W J, Du H, Fang F, Yang W S, Wu Y M, Tang Y X. Cloning and characterization of two new MYB transcription factor genes from soybean. Sci Agric Sin, 2008, 41: 961–970 (in Chinese with English abstract)



[30]郭华军, 焦远年, 邸超, 姚冬霞, 张盖华, 郑雪, 刘岚, 张群莲, 郭蔼光, 苏震. 拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索. 植物学报, 2009, 44: 290–299



    Guo H J, Jiao Y N, Di C, Yao D X, Zhang G H, Zheng X, Liu L, Zhang Q L, Guo A G, Su Z. Discovery of Arabidopsis GRAS family genes in response to osmotic and drought stresses. Chin Bull Bot, 2009, 44: 290–299 (in Chinese with English abstract)



[31]Czikkel B E, Maxwell D P. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. J Plant Physiol, 2007, 164: 1220–1230
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!