欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (11): 1914-1924.doi: 10.3724/SP.J.1006.2014.01914

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

黄黑籽甘蓝型油菜类黄酮途径基因SNP位点检测分析

曲存民1,**,卢坤1,**,刘水燕1,卜海东1,付福友2,王瑞1,徐新福1,李加纳1,*   

  1. 1 西南大学重庆市油菜工程技术研究中心, 重庆 400716; 2 Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, S7N 02X, Saskatoon Saskatchewan, Canada
  • 收稿日期:2014-04-14 修回日期:2014-09-16 出版日期:2014-11-12 网络出版日期:2014-10-01
  • 通讯作者: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68251950
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA10A104, 2013AA102602), 国家自然科学基金项目(U1302266, 31401412), 111人才引智基地建设项目(B12006), 重庆市主要农作物良种创新工程项目(cstc2012ggB80008), 农业部农业现代产业技术体系项目(CARS-13), 中央高校基本科研业务费专项资金资助(XDJK2013C031, XDJK2012A009)和西南大学博士基金(SWU112036)资助。

SNP Detection and Analysis of Genes for Flavonoid Pathway in Yellow- and Black-Seeded Brassica napus L.

QU Cun-Min1,**,LU Kun1,**,LIU Shui-Yan1,BU Hai-Dong1,FU Fu-You2,WANG Rui1,XU Xin-Fu1,LI Jia-Na1,*   

  1. 1 Chongqing Rapeseed Technology Research Center of Southwest University, Chongqing 400716, China; 2 Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, S7N 02X, Saskatoon Saskatchewan, Canada
  • Received:2014-04-14 Revised:2014-09-16 Published:2014-11-12 Published online:2014-10-01
  • Contact: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68251950

摘要:

类黄酮物质在植物花、叶、果实和种子颜色变化的过程中起着至关重要的作用,本研究以不同黄黑籽种皮材料为研究对象,采用基因同源克隆方法,获得17个类黄酮基因全长ORF序列,在核酸和蛋白水平上分别序列差异比较表明,这些基因在不同黄黑籽材料中共存在41个不同拷贝成员。在核苷酸水平上,检测到BnTT3BnTT18BnTTG1BnTTG2的单核苷酸位点数目介于16~52之间,且BnTTG2在3个不同的位置上还存在多个碱基的连续性缺失现象(119~121 bp,183~189 bp和325~330 bp),但在蛋白水平上仅存在2~16个氨基酸位点差异,说明BnTT3BnTT18BnTTG1BnTTG2在不同甘蓝型黄黑籽材料中存在单核苷酸位点差异,而单核苷酸位点突变不一定导致氨基酸位点的变异。在不同黄黑籽材料中仅BnTT3BnTT18存在一致性的氨基酸突变位点(252和87),推测BnTT3BnTT18可能在黄黑籽甘蓝型油菜种皮颜色差异形成过程中发挥至关重要的作用。通过这些位点的等位特异PCR可以区分材料间透明种皮基因,为特异基因芯片的开发及阐明甘蓝型油菜种皮色泽性状的基因及其作用位点奠定基础。

关键词: 甘蓝型油菜, 类黄酮途径, 单核苷酸位点多态性, 黄黑籽, 透明种皮基因

Abstract:

Flavonoids as the secondary metabolites play a crucial role in colour changing process of flower, leaf, fruit and seed. In this research, primers for amplifying full-length ORF sequences of the genes involved in the favonoid biosynthesis pathways were designed according to conserved nucleotide regions from the public databases. Using the homology-based cloning strategy, 41 gene copies were obtained from 13 genes using 17 pairs of specific primers in different yellow- and black-seeded seed coats of B. napus. Each of full-length ORF sequences was sequenced and analyzed in the levels of both nucleic acid and protein. The results showed that the SNPs in four flavonoid pathway genes (BnTT3, BnTT18, BnTTG1,and BnTTG2), ranged from 16 to 52, but there were olny 2 to 16 amino acid mutations detected in the protein level, indicating that the mutation of SNPs may not be involved in the mutation of amino acid. In addition, continuous bases deletion existed in different positions of sequence of BnTTG2 (119 to 121 bp, 183 to 189 bp and 325 to 330 bp), and two consistent amino acid mutation sites were detected in BnTT3 and BnTT18 among different materials, inferring that BnTT3 and BnTT18 may play an important role in difference of seed coat colour formation in yellow- and black-seeded B. napus. Therefore, these genes involved in flavonoid pathway could be distinguished by the allelic-specific PCR in yellow- and black-seeded B. napus. These results could help to develop specific seed coat gene chips and elucidate the genes and their action sites for the seed coat colour in B. napus

Key words: Brassica napus L., Flavonoid pathway, Single nucletide polymorphism (SNP), Yellow- and black-seeded, Transparent testa

[1]王晶, 孟金陵. 芸薹属作物基因组研究进展及其在育种中的意义. 分子植物育种, 2010, 8: 837–845



Wang J, Meng J L. Progress on genome research of Brassica crops and its significance for breeding. Mol Plant Breed, 2010, 8: 837–845 (in Chinese with English Abstract)



[2]Theander O, Aman P, Miksche G E, Yasuda S. Carbohydrate polyphenols and lignin in seed hulls of different colours from tumip rapeseed. J Agric Food Chem, 1977, 25: 270–273



[3]Somers D J, Rakow G, Prabhu V K, Friesen K R D. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome, 2001, 44: 1077–1082



[4]Rahman M, Joersbo M, Poulsen M. Development of yellow-seeded Brassica napus of double low quality. Plant Breed, 2001, 120: 473–478



[5]肖达人, 刘后利. 甘蓝型油菜(Brassica napus L.)种皮颜色与种子含油量的相关分析. 作物学报, 1982, 8: 245–254



Xiao D R, Liu H L. Correlation analysis of seed colour and seed oil in Brassica napus L. Acta Agron Sin, 1982, 8: 245–254



[6]Shirzadegan M, Rbbelen G. Influence of seed color and hull proportion on quality properties of seeds in Brassica napus L. Fette, Seifen, Anstrichmittel, 1985, 87: 235–237



[7]Sensoz S, Angin D, Yorgun S. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass Bioenergy, 2000, 19: 271–279



[8]Badani A G, Snowdon R G, Wittkop B, Lipsa F D, Baetzel R, Horn R, Haro A D, Font R, Lühs W, Friedt W. Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome, 2006, 49: 1499–1509



[9]Rahman M, Li G, Schroeder D, McVetty P. Inheritance of seed coat color genes in Brassica napus (L.) and tagging the genes using SRAP, SCAR and SNP molecular markers. Mol Breed, 2010, 26: 439–453



[10]Xiao S S, Xu J S, Li Y, Zhang L, Shi S J, Shi S W, Wu J S, Liu K D. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome, 2007, 50: 611–618



[11]Zhang Y, Li X, Chen W, Yi B, Wen J, Shen J, Ma C, Chen B, Tu J, Fu T. Identification of two major QTL for yellow seed color in two crosses of resynthesized Brassica napus line No. 2127-17. Mol Breed, 2011, 28: 335–342



[12]Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007, 50: 840–854



[13]Liu Z W, Fu T D, Tu J X, Chen B Y. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl Genet, 2005, 110: 303–310



[14]Deynze A, Van , Landry B, Pauls K. The identification of restriction fragment length polymorphisms linked to seed colour genes in Brassica napus. Genome, 1995, 38: 534–542



[15]Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch J H, Xu Y. High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed, 2010, 25: 441–451



[16]Akhunov E, Nicolet C, Dvorak J. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet, 2009, 119: 507–517



[17]Westermeier P, Wenzel G, Mohler V. Development and evaluation of single-nucleotide polymorphism markers in allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet, 2009, 119: 1301–1311



[18]Trick M, Long Y, Meng J, Bancroft I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J, 2009, 7: 334–346



[19]Albert S, Delseny M, Devic M. BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J, 1997, 11: 289–299



[20]Baudry A, Caboche M, Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell specific accumulation of flavonoids in Arabidopsis thaliana. Plant J, 2006, 46: 768–779



[21]Chiu L W, Zhou X, Burke S, Wu X, Prior R L, Li L. The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol, 2010, 154: 1470–1480



[22]Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J, 1999, 19: 387–398



[23]Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell Online, 2000, 12: 1863–1878



[24]Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell Online, 2001, 13: 2099–2114



[25]Xie D Y, Sharma SB, Paiva N L, Ferreira D, Dixon R A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 2003, 299: 396–399



[26]Shikazono N, Yokota Y, Kitamura S, Suzuki C, Watanabe H, Tano S, Tanaka A. Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics, 2003, 163: 1449–1455



[27]Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta, 2006, 224: 96–107



[28]Meinke D W. Arabidopsis thaliana: a model plant for genome analysis. Science, 1998, 282: 662–682



[29]马爱芬, 李加纳, 谌利, 钱伟, 付福友, 刘列钊. 甘蓝型油菜种皮色泽相关基因的 cDNA-SRAP 差异显示. 作物学报, 2008, 34: 526–529



Ma A F, Li J N, Chen L, Qian W, Fu F Y, Liu L Z. Differential Display of Related Genes to Seed-Coat Color by cDNA-SRAP in Brassica napus L.. Acta Agron Sin, 2008, 34: 526–529 (in Chinese with English Abstract)



[30]曲存民, 付福友, 刘列钊, 王家丰, 毛丽佳, 原小燕, 谌利, 李加纳. 甘蓝型油菜胚色素成分的QTL定位. 作物学报, 2009, 35, 286–294



Qu C M, Fu F Y, Liu L Z, Wang J F, Mao L J, Yuan X Y, Chen L, Li J N. QTL Mapping of Embryonic Pigment Components in Brassica napus. Acta Agron Sin, 2009, 35: 286–294 (in Chinese with English Abstract)



[31]Auger B, Baron C, Lucas M O, Vautrin S, Bergès H, Chalhoub B, Fautrel A, Renard M, Nesi N. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta, 2009, 230: 1167–1183



[32]Wei Y L, Li J N, Lu J, Tang Z L, Pu D C, Chai Y R. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep, 2007, 34: 105–120



[33]Akhov L, Ashe P, Tan Y, Datla R, Selvaraj G. Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Botany, 2009, 87: 616–625



[34]Chai Y R, Lei B, Huang H L, Li J N, Yin J M, Tang Z L, Wang R, Chen L. TRANSPARENT TESTA12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genom, 2009, 281: 109–123



[35]Lotz T, Snowdon R, Horn R, Dewal G, Weisshaar B, Friedt W, Caboche M, Chalhoub B. Molecular Analysis of Arabidopsis thaliana tt-genes in Brassica napus. In: Proceedings of the 11th International Rapeseed Congress, 2003. pp 109–111



[36]严明理, 刘显军, 刘忠松, 官春云, 袁谋志, 熊兴华. 芥菜型油菜4-二氢黄酮醇还原酶基因的克隆和表达分析. 作物学报, 2008, 34: 1–7



Yan M L, Liu X J, Liu Z S, Guan C Y, Yuan M Z, Xiong X H. Cloning and expression analysis of dihydroflavonol 4-reductase gene in Brassica juncea. Acta Agron Sin, 2008, 34: 1–7 (in Chinese with English abstract)



[37]Sharma S B, Dixon R A. Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J, 2005, 44: 62–75



[38]Chen A H, Chai Y R, Li J N, Chen L. Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus). J Biochem Mol Biol, 2007, 40: 247–260



[39]Lu K, Chai Y R, Zhang K, Wang R, Chen L, Lei B, Lu J, Xu X F, Li J N. Cloning and characterization of phosphorus starvation inducible Brassica napus PURPLE ACID PHOSPHATASE12 gene family, and imprinting of a recently evolved MITE-minisatellite twin structure. Theor Appl Genet, 2008, 117: 963–975



[40]Xu B B, Li J N, Zhang X K, Wang R, Xie L L, Chai Y R. Cloning and molecular characterization of a functional flavonoid 3'-hydroxylase gene from Brassica napus. J Plant Physiol, 2007, 164: 350–363



[41]Zhang K, Lu K, Qu C, Liang Y, Wang R, Chai Y, Li J. Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus. PloS One, 2013, 8: e61247



[42]Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty P B, Li G. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol, 2009, 69: 553–563



[43]Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen J, Tu J. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PloS one, 2012, 7: e44145



[44]Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). Theor Appl Genet, 2014, 127: 339–347



[45]Stein A, Wittkop B, Liu L, Obermeier C, Friedt W, Snowdon R J. Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breed, 2013, 132: 382–389



[46]Marles M, Gruber M Y, Scoles G J, Muir A D. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry, 2003, 62: 663–672



[47]Park K I, Ishikawa N, Morita Y, Choi J D, Hoshino A, Iida S. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J, 2007, 49: 641–654



[48]Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K I. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J, 2007, 49: 91–102



[49]Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA 2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell Online, 2002, 14: 1359–1375



[50]Dilkes B P, Spielman M, Weizbauer R, Watson B, Burkart-Waco D, Scott R J, Comai L. The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biol, 2008, 6: 2707–2720



[51]Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell, 2007, 19: 2531–2543



[52]Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal, 2008, 53: 814–827



[53]Marles M, Gruber M Y. Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric, 2004, 84: 251–262



[54]叶小利, 李加纳, 唐章林, 梁颖, 谌利. 甘蓝型油菜种皮色泽及相关性状的研究. 作物学报, 2001, 27: 550–556



Ye X L, Li J N, Tang Z L, Liang Y, Chen L. Study on seedcoat color and related characters of Brassica napus. Acta Agron Sin, 2001, 27: 550–556 (in Chinese with English abstract)



[55]叶小利, 李学刚, 李加纳. 甘蓝型油菜种皮黑色素形成机理的研究. 作物学报, 2002, 28: 638–643



Ye X L, Li X G, Li J N. Mechanism of melanin synthesis in seed coat of Brassica napus L. Acta Agron Sin, 2002, 28: 638–643 (in Chinese with English abstract)

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[7] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[8] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[9] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[10] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[11] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[12] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[13] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[14] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[15] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!