欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (11): 1964-1972.doi: 10.3724/SP.J.1006.2014.01964

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜苗期耐淹性状主基因+多基因遗传分析

金岩1,2,吕艳艳2,付三雄2,戚存扣2,*   

  1. 1 南京农业大学农学院, 江苏南京 210095; 2 江苏省农业科学院经济作物研究所, 江苏南京 210014
  • 收稿日期:2014-02-10 修回日期:2014-07-06 出版日期:2014-11-12 网络出版日期:2014-07-25
  • 通讯作者: 戚存扣, E-mail: qck9898@sina.com, Tel: 025-84390372, 025-84390367
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目(2011-G23), 国家现代农业产业技术体系建设专项(CARS-13)和江苏省农业科技自主创新资金[CX(11)4009]资助。

Inheritance of Major Gene Plus Polygene of Water-logging Tolerance in Brassica napus L.

JIN Yan1,2,LÜ Yan-Yan2,FU San-Xiong2,QI Cun-Kou2,*   

  1. 1 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2014-02-10 Revised:2014-07-06 Published:2014-11-12 Published online:2014-07-25
  • Contact: 戚存扣, E-mail: qck9898@sina.com, Tel: 025-84390372, 025-84390367

摘要:

长江中下游是中国油菜主产区,该地区油菜播栽期间雨水多,易产生湿害,造成产量下降。所以研究甘蓝型油菜苗期耐淹性的遗传规律,对选育耐淹性强油菜新品种,提高油菜产量意义重大。本文应用甘蓝型油菜品种WR-4 (耐淹)WR-5 (不耐淹)杂交后代衍生的6个世代(P1F1P2B1:2B2:2F2:3)群体为材料,全淹6 d后去水恢复生长,去水后第7天调查死苗率,以此为耐淹性指标,于201220136个世代群体家系进行耐淹性鉴定。应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法对耐淹性进行遗传分析。结果表明,2个年度该家系群体苗期耐淹性的最适遗传模型分别是E-0B-3,即2对加性-显性-上位性主基因+加性-显性-上位性多基因和2对加性主基因模型。由此可见,该家系群体甘蓝型油菜苗期耐淹性主要受2对主基因控制,主基因存在加性、显性和上位性效应。当有显性效应存在时(2012),主基因显性效应值|ha|=0.3475|hb|=0.0069大于主基因加性效应值|da|=|db|=0.0036B1:2B2:2F2:3群体的主基因遗传率(h2mg)2012年分别为36.25%61.40%61.84%,平均为53.16%2013年分别为8.30%30.48%43.13%;平均为27.30%2年平均,环境变异占表型变异的59.77%。上述结果表明,甘蓝型油菜苗期耐淹性受2对主基因型控制,但环境对耐淹性状的表型影响较大。F2:3家系群体苗期耐淹性遗传率较高,因此育种上可在早期世代对耐淹性状进行选择。

关键词: 甘蓝型油菜, 耐淹性, 主基因+多基因, 遗传分析

Abstract:

The middle and lower reaches of Yangtze River is a main producing region of canola (Brassica napus L.) in China. However, canola in this region is subjected to water-logging during planting period to reduce yield. It is of importance to study the inheritance of water-logging tolerance for canola. In this paper a family lines population of six generations of P1, F1, P2, B1:2, B2:2, F2:3 derived from the cross of WR-4 (resistant)×WR-5 (non-resistant) was used to analyse genetic segregation by applying major gene plus polygene mixed inheritance model. The seedling mortality was recorded on the 7th day after logging-removing for plant recovery following six days full-submergence treatment of the seedlings in 2012 and 2013. The results showed that the seedling mortality was respectively fitted the genetic model of E-0 and B-3 i.e. two pairs of additive- dominant-epistatic major gene plus additive-dominant-epistatic polygene model and two pairs of additive major genes model. This result confirms that water-logging tolerance of seedling in this cross is controlled mainly by two major genes which expressed in the mode of additive-dominant-epistatic effects. While dominant effects expressed (2012) it gave a higher value of |ha|=0.3475, |hb|=0.0069 than the additive effect of the major genes which was |da|=|db|=0.0036. In the populations of B1:2, B2:2, and F2:3, h2mg was 36.25%, 61.40%, and 61.84% respectively with an average of 53.16% in 2012, and 8.30%, 30.48%, and 43.13% respectively with an average of 27.30% in 2013. Variance from environment effects was 59.77% of the total phenotypic variance on an average in two years. A conclusion could be made that water-logging tolerance of seedling in B. napus is controlled by two major genes but heavily affected by environment. Since a higher value of h2mg was detected in F2:3 populations, selection in early generations might be an effective way for waterlogging tolerance breeding in B. napus.

Key words: Brassica napus L., Water-logging tolerance, Major gene plus polygene, Genetic model

[1]张冬晓. 我国油菜生产的发展与展望. 中国油料作物学报, 2001, 23: 80–82



Zhang D X, Developmental prospect of rapeseed production in China. Chin J Oil Crop Sci, 2001, 23: 80–82 (in Chinese)



[2]王汉中. 我国油菜产需形势分析及产业发展对策. 中国油料作物学报, 2007, 29: 101–105



Wang H Z. Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China. Chin J Oil Crop Sci, 2007,  29: 101–105 (in Chinese with English abstract)



[3]Leul M, Zhou W J. Alleviation of waterlogging damage in winter rape by application of uniconazole: effects on morphological characteristics, hormones and photosynthesis. Field Crops Res, 1998, 59: 121–127



[4]李真, 蒲圆圆, 高长斌, 周广生, 涂金星, 傅廷栋. 甘蓝型油菜DH群体苗期耐湿性的评价. 中国农业科学, 2010, 43: 286–292



Li Z, Pu Y Y, Gao C B, Zhou G S, Tu J X, Fu T D. Evaluation of waterlogging tolerance in rapeseed (Brassica napus L.) DH lines at seedling stage. Sci Agric Sin, 2010, 43: 286–292 (in Chinese with English abstract)



[5]Gutierrez B F H, Lavado R S, Porcelli C A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res, 1996, 47: 175–179



[6]Zhou W J, Lin X Q. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crops Res, 1995, 44: 103–110



[7]胡官庆, 吴应元, 宋周元, 黄正勤. 油菜湿害表现及生理机制与预防. 安徽农业科学, 2000, 28(2): 171–171



Hu G Q, Wu Y Y, Song Z Y, Huang Z Q. Performance, physiological mechanisms and prevention of waterlogging in rapeseed. J Anhui Agric Sci, 2000, 28(2): 171–171 (in Chinese)



[8]戚存扣, 傅寿仲. 江苏油菜科学技术发展50年. 江苏农业学报, 2010, 26: 430–436



Qi C K, Fu S Z. Fifty years experience of development of cultivars and cultivation of oil-seed rape in Jiangsu Province. Jiangsu J Agric Sci, 2010, 26: 430–436 (in Chinese with English abstract)



[9]张洁夫, 戚存扣. 江苏油菜产业可持续发展的关键技术. 江苏农业学报, 2013, 29: 1236–1240



Zhang J F, Qi C K. Key technologies for sustainable development of rapeseed production in Jiangsu Province. Jiangsu J Agric Sci, 2013, 29: 1236–1240 (in Chinese with English abstract)



[10]宋丰萍, 胡立勇, 周广生, 吴江生, 傅廷栋. 渍水时间对油菜生长及产量的影响. 作物学报, 2010, 36: 170–176



Song F P, Hu L Y, Zhou G S, Wu J S, Fu T D. Effects of waterlogging time on rapeseed (Brassica napus L.) growth and yield. Acta Agron Sin, 2010, 36: 170–176 (in Chinese with English abstract)



[11]李玲, 张春雷, 张树杰, 李光明. 渍水对冬油菜苗期生长及生理的影响. 中国油料作物学报, 2011, 33: 247–252



Li L, Zhang C L, Zhang S J, Li G M. Effects of waterlogging on growth and physiological changes of winter rapeseed seedling (Brassica napus L.). Chin J Oil Crop Sci, 2011, 33: 247–252 (in Chinese with English abstract)



[12]陈洁, 张学昆, 谌利, 晁国红, 李加纳. 甘蓝型油菜耐湿种质资源的快速筛选. 中国油料作物学报, 2006, 28: 138–143



Chen J, Zhang X K, Chen L, Chao G H, Li J N. Screening for waterlogging tolerance germplasm in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2006, 28: 138–143 (in Chinese)



[13]张学昆, 陈洁, 王汉中, 李加纳, 邹崇顺. 甘蓝型油菜耐湿性的遗传差异鉴定. 中国油料作物学报, 2007, 29: 204–208



Zhang X K, Chen J, Wang H Z, Li J N, Zou C S. Genetic difference of waterlogging tolerance in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2007, 29: 204–208 (in Chinese with English abstract)



[14]李云, 付三雄, 戚存扣. 油菜苗期耐淹性快速筛选方法的建立及验证. 中国油料作物学报, 2012, 34: 256–261



Li Y, Fu S X, Qi C K. Screening method on waterlogging tolerance of rapeseed seedling through morphology and physiology verification. Chin J Oil Crop Sci, 2012, 34: 256–261 (in Chinese with English abstract)



[15]丛野, 程勇, 邹崇顺, 张学昆, 王汉中. 甘蓝型油菜发芽种子耐湿性的主基因+多基因遗传分析. 作物学报, 2009, 35: 1462–1467



Cong Y, Cheng Y, Zou C S, Zhang X K, Wang H Z. Genetic analysis of waterlogging tolerance for germinated seeds of rapeseed (Brassica napus L.) with mixed model of major gene plus polygene. Acta Agron Sin, 2009, 35: 1462–1467 (in Chinese with English abstract)



[16]盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003. pp 6– 8, 224–265, 351–370



Gai J Y, Zhang Y M, Wang J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Pres, 2003. pp 6– 8, 224–265, 351–370 (in Chinese)



[17]刘后利. 实用油菜栽培学. 上海:上海科学技术出版社, 1987. pp 536–537



Liu H L. Practical Cultivation of Rapeseed. Shanghai: Shanghai Scientific and Technical Publishers, 1987. pp 536–537 (in Chinese)



[18]Burgos M S, Messmer M M, Stamp P, Schmid J E. Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.): a physiological and genetic approach. Euphytica, 2001, 122: 287–295



[19]薛远超, 李加纳, 刘列钊, 徐新福. 甘蓝型油菜EMS诱变材料的耐湿性鉴定与筛选. 西南师范大学学报(自然科学版), 2012, 37(4): 76–80



Xue Y C, Li J N, Liu L K, Xu X F. Identification and screening of waterlogging tolerance of EMS mutagenesis lines in (Brassica napus L.). J Southwest Chin Nor Univ (Nat Sci Edn), 2012, 37(4): 76–80 (in Chinese)



[20]时明芝, 周保松. 植物涝害和耐涝机理研究进展. 安徽农业科学, 2006, 34(2): 209–210



Shi M Z, Zhou B S. Research advance in physiological damage of flood and water-logging resistance. J Anhui Agric Sci, 2006, 34(2): 209–210 (in Chinese with English abstract)



[21]钟雪花, 杨万年, 吕应堂. 淹水胁迫下对烟草、油菜某些生理指标的比较研究. 武汉植物学研究, 2002, 20: 395–398



[22]Zhong X H, Yang W N, Lü Y T. Comparative research on some physiological characteristics of tobacco and rape under flooding stress. J Wuhan Bot Res, 2002, 20: 395–398 (in Chinese with English abstract)



[23]吕艳艳, 金岩, 付三雄, 戚存扣. 不同耐淹油菜品种的耐淹性生理差异. 植物生理学报, 2013, 49: 959–967



Lü Y Y, Jin Y, Fu S X, Qi C K. Physiological differences of different waterlogging resistant Brassica napus L. under waterlogging stress. Plant Physiol J, 2013, 49: 959–967 (in Chinese with English abstract)
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[10] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[11] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[12] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[13] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[14] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[15] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!