欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (04): 585-592.doi: 10.3724/SP.J.1006.2015.00585

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

拟南芥下胚轴向光弯曲P2SA2基因的克隆与功能鉴定

赵青平,赵翔,慕世超,肖慧丽,张骁*   

  1. 河南大学生命科学学院 / 棉花生物学国家重点实验室 / 植物逆境生物学重点实验室,河南开封 475004?
  • 收稿日期:2014-08-22 修回日期:2015-02-06 出版日期:2015-04-12 网络出版日期:2015-03-02
  • 通讯作者: 张骁, E-mail: xzhang@henu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31170271, 31101023)资助。

Functional Analysis and Mapping of Gene P2SA2 Involved in Hypocotyl Phototropism of Arabidopsis thaliana

ZHAO Qing-Ping,ZHAO Xiang,MU Shi-Chao,XIAO Hui-Li,ZHANG Xiao*   

  1. State Key Laboratory of Cotton Biology / Key Laboratory of Plant Stress Biology / College of Life Sciences, Henan University, Kaifeng 475004, China
  • Received:2014-08-22 Revised:2015-02-06 Published:2015-04-12 Published online:2015-03-02
  • Contact: 张骁, E-mail: xzhang@henu.edu.cn

摘要:

向光素PHOT1介导较宽范围蓝光诱导的下胚轴向光弯曲,而向光素PHOT2仅在强蓝光下起作用。强蓝光下, PHOT1和PHOT2介导拟南芥下胚轴向光弯曲的功能冗余性,限制了人们对PHOT2功能的研究。为此,以拟南芥phot1突变体为材料,避开PHOT1基因的干扰,通过EMS诱变筛选拟南芥下胚轴向光不弯曲突变体, 成功克隆到1个基因,命名为P2SA2 (phototropin 2 signaling associated 2),该基因被证明是NPH3的等位基因。P2SA2基因的突变可导致拟南芥缺失强蓝光诱导的下胚轴向光弯曲反应。在p2sa2突变体背景下,P2SA2基因超表达可恢复强蓝光诱导的拟南芥下胚轴向光弯曲。该结果将为强蓝光下PHOT2下游基因的筛选、功能鉴定和揭开PHOT2调节强蓝光诱导的下胚轴弯曲的机制提供理论基础。

关键词: 拟南芥, 下胚轴向光弯曲, 蓝光, 图位克隆

Abstract:

PHOT1 functions at both low and high-intensity blue light to mediate phototropic responses, but PHOT2 functions only at high-intensity blue light. The functional redundancy of PHOT1 and PHOT2 on high-intensity blue light-induced phototropic curvature of hypocotyls in Arabidopsis thaliana, restricts the understanding of the mechanism of PHOT2 signal transduction. Therefore, in order to avoid the interference of PHOT1, Arabidopsis phot1 mutant was selected as material for screening high blue light insensitive mutants by the EMS mutation, and we successfully screened and cloned the gene P2SA2 (phototropin2 signaling associated 2). The gene P2SA2 turned out to be the allelic of NPH3 (Nonphototropic hypocotyl 3). The mutation of gene P2SA2 could result in that Arabidopsis thaliana lost the phototropism to unilateral high intensity blue light. Transgenic plants of p2sa2 35S::P2SA2 restored hypocotyl phototropism to high intensity blue light. These findings will open new perspectives about the screening and functional identification of PHOT2 downstream genes in response to high blue light, and provide the theoretical basis to uncover hypocotyl bending mechanism regulated by PHOT2.

Key words: Arabidopsis thaliana, Blue light, Phototropism, Map-based cloning

[1]Huala E, Oeller P W, Liscum E, Han I S, Larsen E, Briggs W R. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science, 1997, 278: 2120–2123



[2]Demarsy E, Fankhauser C. Higher plants use LOV to perceive blue light. Curr Opin Plant Biol, 2009, 12: 69–74



[3]Christie J M. Phototropin blue-light receptors. Annu Rev Plant Biol, 2007, 58: 21–45



[4]Sakai T, Kagawa T, Kasahara M, Swartz T E, Christie J M, Briggs W R, Wada M, Okada K. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA, 2001, 98: 6969–6974



[5]Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature, 2001, 414: 656–660



[6]Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science, 2001, 291: 2138–2141



[7]Carbonnel M D, Davis P, Roelfsema M R, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and Leaf Positioning. Plant Physiol, 2010, 152: 1391–1405



[8]Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M. Chloroplast avoidance movement reduces photodamage in plant. Nature, 2002, 420: 829–832



[9]Takemiya A, Inoue S, Doi M, Kinoshita T, Shimazaki K. Phototropins promote plant growth in response to blue light in low light environments. Plant Cell, 2005, 17: 1120–1127



[10]Briggs W R, Christie J M. Phototropins 1 and 2: Versatile plant blue-light receptors. Trends Plant Sci, 2002, 7: 204–210



[11]Motchoulski A, Liscum E. Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science, 1999, 286: 961–964



[12]Inada S, Ohgishi M, Mayama T, Okada K, Sakai T. RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell, 2004, 16: 887–896



[13]Lariguet P, Schepens I, Hodgson D, Pedmale U V, Trevisan M, Kami C, de Carbonnel M, Alonso J M, Ecker J R, Liscum E, Fankhauser C. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin1 binding protein required for phototropism. Proc Natl Acad Sci USA, 2006, 103: 10134–10139



[14]Blakeslee J J, Bandyopadhyay A, Peer W A, Makam S N, Murphy A S. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol, 2004, 134: 28–31



[15]Stone B B, Stowe-Evans E L, Harper R M, Celaya R B, Ljung K, Sandberg G, Liscum E. Distruption in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant, 2008, 1: 129–144



[16]Sakai T, Wada T, Ishiguro S, Okada K. RPT2: A signal transducer of the phototropic response in Arabidopsis. Plant Cell, 2000, 12: 225–236



[17]Tseng T S and Briggs W R. The Arabidopsis rcn1-1 mutation impairs dephosphorylation of phot2, resulting in enhanced blue light responses. Plant Cell, 2010, 22: 392–402



[18]Doi M, Shigenaga A, Emi T, Kinoshita T, Shimazaki K I. A transgene encoding a blue-light receptor, phot1, restores blue-light responses in the Arabidopsis phot1phot2 double mutant. J Exp Bot, 2004, 396: 517–523



[19]赵翔, 王琳丹, 李园园, 赵青平, 张骁. PHOT2介导拟南芥下胚轴向光弯曲调节子的筛选与鉴定. 植物学报, 2014, 49: 254–261



Zhao X, Wang LD, Li Y Y, Zhao Q P, Zhang X. Isolation and characterization of regulators involved in PHOT2-mediated phototropismof hypocotyls in Arabidopsis. Chin Bull Bot, 2014, 49: 254–261 (in Chinese with English abstract)



[20]Zhao X, Wang Y L, Qiao X R, Wang J, Wang L D, Xu C S, Zhang X. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol, 2013, 162: 1539–1551



[21]Briggs W R, Beck C F, Cashmore A R. The phototropin family of photoreceptors. Plant Cell, 2001, 13: 993–997



[22]Pedmale U V, Liscum E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem, 2007, 282: 19992–20001



[23]Harper R M, Stowe-Evans E L, Luesse D R, Muto H, Tatematsu K, Watahiki M K, Yamamoto K, Liscum E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 2000, 12: 757–770



[24]Liscum E, Briggs W R. Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol, 1996, 112: 291–296



[25]de Carbonnel M, Davis P, Roelfsema M R, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol, 2010, 152: 1391–1405



[26]Tsuchida-Mayama T, Nakano M, Uehara Y, Sano M, Fujisawa N, Okada K, Sakai T. Mapping of the phosphorylation sites on the phototropic signal transducer, NPH3. Plant Sci, 2008, 174: 626–633



[27]Knauer T, Dümmer M, Landgraf F, Forreiter C. A negative effector of blue light-induced and gravitropic bending in Arabidopsis. Plant Physiol, 2011, 156: 439–447



[28]Harada A, Shimazaki K. Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol, 2007, 83: 102–111

[1] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[2] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[3] 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183.
[4] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[5] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
[6] 赵翔,朱自亿,王潇楠,慕世超,张骁. 拟南芥RPT2与RIP1互作调节下胚轴向光弯曲的功能鉴定[J]. 作物学报, 2018, 44(12): 1802-1808.
[7] 刘睿洋,刘芳,张振乾,官春云. 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析[J]. 作物学报, 2016, 42(10): 1471-1478.
[8] 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695.
[9] 牛静,陈赛华,赵婕妤,曾召琼,蔡茂红,周亮,刘喜,江玲,万建民. 水稻株型突变体rad-1rad-2的鉴定与功能基因克隆[J]. 作物学报, 2015, 41(11): 1621-1631.
[10] 宋仲戬,张登峰*,李永祥,石云素,宋燕春,王天宇,黎裕. 玉米分子伴侣基因ZmBiP2在逆境下的功能分析[J]. 作物学报, 2015, 41(05): 708-716.
[11] 吕艳艳,付三雄,陈松,张维,戚存扣*. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41(04): 565-573.
[12] 张涛,孙玉莹,郑建敏,程治军,蒋开锋,杨莉,曹应江,游书梅,万建民,郑家奎. 水稻早衰叶突变体PLS2的遗传分析与基因定位[J]. 作物学报, 2014, 40(12): 2070-2080.
[13] 冯勋伟,才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证[J]. 作物学报, 2014, 40(09): 1572-1578.
[14] 张高阳,祁建民,徐建堂,牛小平,张雨佳,张立武,陶爱芬,方平平,林荔辉. 圆果黄麻纤维素合成酶基因CcCesA1的克隆、反义载体构建及转化拟南芥[J]. 作物学报, 2014, 40(05): 816-822.
[15] 彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*. 蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力[J]. 作物学报, 2013, 39(08): 1345-1351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!