作物学报 ›› 2015, Vol. 41 ›› Issue (04): 585-592.doi: 10.3724/SP.J.1006.2015.00585
赵青平,赵翔,慕世超,肖慧丽,张骁*
ZHAO Qing-Ping,ZHAO Xiang,MU Shi-Chao,XIAO Hui-Li,ZHANG Xiao*
摘要:
向光素PHOT1介导较宽范围蓝光诱导的下胚轴向光弯曲,而向光素PHOT2仅在强蓝光下起作用。强蓝光下, PHOT1和PHOT2介导拟南芥下胚轴向光弯曲的功能冗余性,限制了人们对PHOT2功能的研究。为此,以拟南芥phot1突变体为材料,避开PHOT1基因的干扰,通过EMS诱变筛选拟南芥下胚轴向光不弯曲突变体, 成功克隆到1个基因,命名为P2SA2 (phototropin 2 signaling associated 2),该基因被证明是NPH3的等位基因。P2SA2基因的突变可导致拟南芥缺失强蓝光诱导的下胚轴向光弯曲反应。在p2sa2突变体背景下,P2SA2基因超表达可恢复强蓝光诱导的拟南芥下胚轴向光弯曲。该结果将为强蓝光下PHOT2下游基因的筛选、功能鉴定和揭开PHOT2调节强蓝光诱导的下胚轴弯曲的机制提供理论基础。
[1]Huala E, Oeller P W, Liscum E, Han I S, Larsen E, Briggs W R. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science, 1997, 278: 2120–2123[2]Demarsy E, Fankhauser C. Higher plants use LOV to perceive blue light. Curr Opin Plant Biol, 2009, 12: 69–74[3]Christie J M. Phototropin blue-light receptors. Annu Rev Plant Biol, 2007, 58: 21–45[4]Sakai T, Kagawa T, Kasahara M, Swartz T E, Christie J M, Briggs W R, Wada M, Okada K. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA, 2001, 98: 6969–6974[5]Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature, 2001, 414: 656–660[6]Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science, 2001, 291: 2138–2141[7]Carbonnel M D, Davis P, Roelfsema M R, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and Leaf Positioning. Plant Physiol, 2010, 152: 1391–1405[8]Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M. Chloroplast avoidance movement reduces photodamage in plant. Nature, 2002, 420: 829–832[9]Takemiya A, Inoue S, Doi M, Kinoshita T, Shimazaki K. Phototropins promote plant growth in response to blue light in low light environments. Plant Cell, 2005, 17: 1120–1127[10]Briggs W R, Christie J M. Phototropins 1 and 2: Versatile plant blue-light receptors. Trends Plant Sci, 2002, 7: 204–210[11]Motchoulski A, Liscum E. Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science, 1999, 286: 961–964[12]Inada S, Ohgishi M, Mayama T, Okada K, Sakai T. RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell, 2004, 16: 887–896[13]Lariguet P, Schepens I, Hodgson D, Pedmale U V, Trevisan M, Kami C, de Carbonnel M, Alonso J M, Ecker J R, Liscum E, Fankhauser C. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin1 binding protein required for phototropism. Proc Natl Acad Sci USA, 2006, 103: 10134–10139[14]Blakeslee J J, Bandyopadhyay A, Peer W A, Makam S N, Murphy A S. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol, 2004, 134: 28–31[15]Stone B B, Stowe-Evans E L, Harper R M, Celaya R B, Ljung K, Sandberg G, Liscum E. Distruption in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant, 2008, 1: 129–144[16]Sakai T, Wada T, Ishiguro S, Okada K. RPT2: A signal transducer of the phototropic response in Arabidopsis. Plant Cell, 2000, 12: 225–236[17]Tseng T S and Briggs W R. The Arabidopsis rcn1-1 mutation impairs dephosphorylation of phot2, resulting in enhanced blue light responses. Plant Cell, 2010, 22: 392–402[18]Doi M, Shigenaga A, Emi T, Kinoshita T, Shimazaki K I. A transgene encoding a blue-light receptor, phot1, restores blue-light responses in the Arabidopsis phot1phot2 double mutant. J Exp Bot, 2004, 396: 517–523[19]赵翔, 王琳丹, 李园园, 赵青平, 张骁. PHOT2介导拟南芥下胚轴向光弯曲调节子的筛选与鉴定. 植物学报, 2014, 49: 254–261Zhao X, Wang LD, Li Y Y, Zhao Q P, Zhang X. Isolation and characterization of regulators involved in PHOT2-mediated phototropismof hypocotyls in Arabidopsis. Chin Bull Bot, 2014, 49: 254–261 (in Chinese with English abstract)[20]Zhao X, Wang Y L, Qiao X R, Wang J, Wang L D, Xu C S, Zhang X. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol, 2013, 162: 1539–1551[21]Briggs W R, Beck C F, Cashmore A R. The phototropin family of photoreceptors. Plant Cell, 2001, 13: 993–997[22]Pedmale U V, Liscum E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem, 2007, 282: 19992–20001[23]Harper R M, Stowe-Evans E L, Luesse D R, Muto H, Tatematsu K, Watahiki M K, Yamamoto K, Liscum E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 2000, 12: 757–770[24]Liscum E, Briggs W R. Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol, 1996, 112: 291–296[25]de Carbonnel M, Davis P, Roelfsema M R, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol, 2010, 152: 1391–1405[26]Tsuchida-Mayama T, Nakano M, Uehara Y, Sano M, Fujisawa N, Okada K, Sakai T. Mapping of the phosphorylation sites on the phototropic signal transducer, NPH3. Plant Sci, 2008, 174: 626–633[27]Knauer T, Dümmer M, Landgraf F, Forreiter C. A negative effector of blue light-induced and gravitropic bending in Arabidopsis. Plant Physiol, 2011, 156: 439–447[28]Harada A, Shimazaki K. Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol, 2007, 83: 102–111 |
[1] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[2] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[3] | 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183. |
[4] | 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484. |
[5] | 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028. |
[6] | 赵翔,朱自亿,王潇楠,慕世超,张骁. 拟南芥RPT2与RIP1互作调节下胚轴向光弯曲的功能鉴定[J]. 作物学报, 2018, 44(12): 1802-1808. |
[7] | 刘睿洋,刘芳,张振乾,官春云. 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析[J]. 作物学报, 2016, 42(10): 1471-1478. |
[8] | 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695. |
[9] | 牛静,陈赛华,赵婕妤,曾召琼,蔡茂红,周亮,刘喜,江玲,万建民. 水稻株型突变体rad-1和rad-2的鉴定与功能基因克隆[J]. 作物学报, 2015, 41(11): 1621-1631. |
[10] | 宋仲戬,张登峰*,李永祥,石云素,宋燕春,王天宇,黎裕. 玉米分子伴侣基因ZmBiP2在逆境下的功能分析[J]. 作物学报, 2015, 41(05): 708-716. |
[11] | 吕艳艳,付三雄,陈松,张维,戚存扣*. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41(04): 565-573. |
[12] | 张涛,孙玉莹,郑建敏,程治军,蒋开锋,杨莉,曹应江,游书梅,万建民,郑家奎. 水稻早衰叶突变体PLS2的遗传分析与基因定位[J]. 作物学报, 2014, 40(12): 2070-2080. |
[13] | 冯勋伟,才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证[J]. 作物学报, 2014, 40(09): 1572-1578. |
[14] | 张高阳,祁建民,徐建堂,牛小平,张雨佳,张立武,陶爱芬,方平平,林荔辉. 圆果黄麻纤维素合成酶基因CcCesA1的克隆、反义载体构建及转化拟南芥[J]. 作物学报, 2014, 40(05): 816-822. |
[15] | 彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*. 蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力[J]. 作物学报, 2013, 39(08): 1345-1351. |
|