欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (05): 683-691.doi: 10.3724/SP.J.1006.2015.00683

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个具有主效晚抽穗基因的水稻染色体片段代换系的鉴定、形态分析及Ehd4-2定位

向佳,李燕,樊亚伟,许军红,郑丽媛,何光华,杨正林,王楠,赵芳明*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市市级重点实验室,重庆400716
  • 收稿日期:2014-11-20 修回日期:2015-03-19 出版日期:2015-05-12 网络出版日期:2015-03-30
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(201303129), 国家科技支撑计划项目(2011BAD35B02-05)和重庆市科技攻关计划重大项目(CSTC2012ggC80002)资助。

Identification and Morphological Analysis of a Rice Chromosome Segment Substitution Line Carrying a Major Effect Gene for Late Heading Date and Mapping of Ehd4-2

XIANG Jia, LI Yan, FAN Ya-Wei, XU Jun-Hong, ZHENG Li-Yuan, HE Guang-Hua, YANG Zheng-Lin, WANG Nan, and ZHAO Fang-Ming*   

  1. Rice Research Institute, Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400716?, China
  • Received:2014-11-20 Revised:2015-03-19 Published:2015-05-12 Published online:2015-03-30

摘要:

抽穗期是决定水稻品种种植地区和季节适应性的重要农艺性状,鉴定抽穗期基因对水稻生产具有重要意义。本研究采用高代回交和SSR标记辅助选择相结合的方法获得了1个以日本晴为受体亲本、西恢18为供体亲本的含有1个控制晚抽穗表型的主效单基因的水稻染色体片段代换系Z315Z315携带来自西恢185个代换片段,分布于第1、第3、第6和第7染色体上,平均代换片段长度为7.39 MbZ315叶绿素含量、株高、穗长、倒一节间长、倒二叶长、倒三叶长、有效穗数、每穗实粒数和总粒数均显著高于受体日本晴,暗示其代换片段可能携带这些性状的QTLs。进一步利用日本晴与Z315杂交产生的F1F2群体对晚抽穗基因进行遗传分析和分子定位。该晚抽穗表型受1对隐性核基因控制,最终将该基因定位于第3染色体RM14283RM6349之间,物理距离为233 kb。对该区间进行候选基因预测和测序,发现1个与抽穗相关的编码锌指蛋白的基因LOC_Os03g02160在日本晴和Z315间存在差异,该基因可能与Ehd4等位,称作Ehd4-2。由于染色体片段代换系除代换片段外与受体亲本一致,因此本研究无论对进一步分离其他QTLs还是进行基因聚合育种均具有较大利用价值。

关键词: 抽穗期, 染色体片段代换系, 多穗, 多粒, 高叶绿素含量

Abstract:

Heading date is an important agronomic trait deciding planting area and seasonal adaptability of rice varieties. Identification of genes for heading date is important for rice production. In this study, a novel chromosome segment substitution line (CSSL) named Z315, carrying a single gene for late heading date, was identified by advanced backcrosses between the recipient Nipponbare and donor Xihui 18 and SSR marker-assisted selection. Z315 carried five substitution segments from Xihui 18. They were distributed on chromosomes 1, 3, 6, and 7. The average length of these substitution segments is 7.39 Mb. The chlorophyll content, plant height, panicle length, length of the 1st internode, length of the 2nd and 3rd upper leaf, number of efficient panicles, number of spikilets per panicle and number of grains per panicle in Z315 were significantly higher than those in Nipponbare, suggesting that QTLs (quantitative trait locus) for these traits might be carried on the chromosome substitution segments. Furthermore, F1 and F2 populations from cross of Nipponbare and Z315 were used for genetic analysis and gene mapping for the late heading date. Genetic analysis showed that the late heading date phenotype was controlled by a single recessive nuclear gene, which was mapped between SSR markers RM14283 and RM6349 on chromosome 3, with a physical distance of 233 kb. By gene prediction and candidate gene sequencing, a gene (LOC_Os03g02160) related to heading date was found existing differences between Nipponbare and Z315. The gene encoded zinc finger protein, which might be an allele of Ehd4, named Ehd4-2. The results in the paper have important applications for further dissection of other QTLs in Z315 and breeding for gene pyramiding because chromosome segment substitution lines have the same genetic background besides substitution segments compared with the recipient parent.

Key words: Heading date, Chromosome segment substitution lines, More panicles, More grains, High content of chlorophyll

[1]Khush G S. Productivity improvements in rice. Nutr Rev, 2003, 61: 8114–8116



[2]Khush G S. Challenges for meeting the global food and nutrient needs in the new millennium. Proc Nutr Soc, 2001, 60: 15–26



[3]Du M M, Wang C. Progress on mapping of quantitative trait loci in crops. J Northeast Agric Univ, 2008, 15: 63–67



[4]Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103: 104–111



[5]魏祥进, 徐俊峰, 江玲, 王洪俊, 周振玲, 翟虎渠, 万建民. 我国水稻主栽品种抽穗期多样性的遗传分析. 作物学报, 2012, 38: 10–22



Wei X J, Xu J F, Jiang L, Wang H J, Zhou Z L, Zhai H Q, Wan J M. Genetic analysis for the diversity of heading date of cultivated rice in China. Acta Agron Sin, 2012, 38: 10–22 (in Chinese with English abstract)



[6]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473–2484



[7]Yamamoto T, Lin H X, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885–891



[8]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922–7927



[9]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day condition. Plant Cell Physiol, 2002, 43: 1096–1105



[10]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 2004, 18: 926–936



[11]Matsubara K, Yamanouchi U, Wang Z X, Minobe Y, Izawa T, Yano M. Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol, 2008, 148: 1425–1435



[12]Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang Z X, Minobe Y, Yano M. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J, 2011, 66: 603–612



[13]Gao H, Zheng X M, Fei G L, Chen J, Jin M N, Ren Y L, Wu W X, Zhou K N, Sheng P K, Zhou F, Jiang L, Wang J, Zhang X, Guo X P, Wang J L, Cheng Z J, Wu C Y, Wang H Y, Wan J M. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLOS Genet, 2013, 9: e1003281



[14]Wu W X, Zheng X M, Lu G W, Zhong Z Z, Gao H, Chen L P, Wu C Y, Wang H J, Wang Q, Zhou K N, Wang J L, Wu F Q, Zhang X, Gu X P, Cheng Z J, Lei C L, Lin Q B, Jiang L, Wang H Y, Ge S, Wan J M. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA, 2013, 110: 2775–2780



[15]Li J, Chu H W, Zhang Y H, Mou T M, Wu C Y, Zhang Q F, Xu J. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLOS ONE, 2012, 7: e34231



[16]Komiya R, Yokoi S, Shimamoto K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development, 2009, 136: 3443–3450



[17]Kim S L, Lee S, Kim H J, Nam H G, An G. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol, 2007, 145: 1484–1494



[18]Lee S, Kim J, Han J J, Han M J, An G. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J, 2004, 38: 754–764



[19]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767



[20]Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747–1758



[21]Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xin Y Z, Zhang Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319–330



[22]Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J, 2013, 76: 36–46



[23]Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol, 2012, 53: 709–716



[24]Yuan Q B, Saito H, Okumoto Y, Inoue H, Nishida H, Tsukiyama T, Teraishi M, Tanisaka T. Identification of a novel gene ef7 conferring an extremely long basic vegetative growth phase in rice. Theor Appl Genet, 2009, 119: 675–684



[25]徐华山, 孙永健, 周红菊, 余四斌. 构建水稻优良恢复系背景的重叠片段代换系及其效应分析. 作物学报, 2007, 33: 979–986



Xu H S, Sun Y J, Zhou H J, Yu S B. Development and characterization of contiguous segment substitution lines with background of an elite restorer line. Acta Agron Sin, 2007, 33: 979–986 (in Chinese with English abstract)



[26]Ye G, Smith K F. Marker-assisted gene pyramiding for inbred line development: basic principles and practical guidelines. J Plant Breed, 2008, 2: 1–10



[27]Gur A, Zamir D. Natural variation can lift yield barriers in plant breeding. PLOS Biol, 2004, 2: 1610–1615



[28]曾瑞珍, 施军琼, 黄朝锋, 张泽民, 丁效华, 李文涛, 张桂权. 籼稻背景的单片段代换系群体的构建. 作物学报, 2006, 32: 88–95



Zeng R Z, Shi J Q, Huang C F, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a series of single segment substitution lines in indica background of rice (Oryza sativa L.). Acta Agron Sin, 2006, 32: 88–95 (in Chinese with English abstract)



[29]罗继景, 黄巍, 朱瑞良, 林鸿宣. 栽培稻抗旱性相关性状QTL的定位. 植物生理学通讯, 2005, 41: 260–268



Luo J J, Huang W, Zhu R L, Lin H X. QTL mapping of drought-resistance of cultivated rice. Plant Physiol Commun, 2005, 41: 260–268 (in Chinese with English abstract)



[30]Li W T, Zeng R Z, Zhang Z M, Zhang G Q. Mapping of S-b locus for F1 pollen sterility in cultivated rice using PCR based markers. Acta Bot Sin, 2002, 44: 463–467



[31]Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127: 181–197



[32]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 48: 350–382



[33]McCouch S R, Kochert G, Yu Z H. Molecular mapping of rice chromosome. Theor Appl Genet, 1988, 76: 148–159 



[34]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism in rice (Oryza sativa L). Mol Genet Genomics, 1996, 259: 597–607



[35]桑贤春, 何光华, 张毅, 杨正林, 裴炎. 水稻PCR扩增模板的快速制备. 遗传, 2003, 25: 705–707



Sang X C, He G H, Zhang Y, Yang Z L, Pei Y. The simple grain of templates of rice genomes DNA for PCR. Hereditas (Beijing), 2003, 25: 705–707 (in Chinese with English abstract)



[36]郎有忠, 窦永秀, 王美娥, 张祖建, 朱庆森. 水稻生育期对籽粒产量及品质的影响. 作物学报, 2012, 38: 528–534



    Lang Y Z, Dou Y X, Wang M E, Zhang Z J, Zhu Q S. Effects of growth duration on grain yield and quality in rice (Oryza sativa L.). Acta Agron Sin, 2012, 38: 528–534 (in Chinese with English abstract)



[37]Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135: 767–774



[38]Endo-Higashi N, Izawa T. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol, 2011, 52: 1083–1094



[39]Hayama R, Izawa T, Shimamoto K. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol, 2002, 43: 494–504



[40]Ogiso E, Takahashi Y, Sasaki T, Yano M, Izawa T. The role of casein kinase II in flowering time regulation has diversified during evolution. Plant Physiol, 2010, 152: 808–820 



[41]胡文明, 阚海华, 王伟, 徐辰武. 等位基因功能差异的统计遗传学分析及应用. 作物学报, 2014, 40: 72–79



Hu W M, Kan H H, Wang W, Xu C W. Statistical genetics approach for functional difference identification of allelic variations and its application. Acta Agron Sin, 2014, 40: 72–79 (in Chinese with English abstract)



[42]姚国新, 李金杰, 张强, 胡广隆, 陈超, 汤波, 张洪亮, 李自超. 利用4个姊妹近等基因群体定位水稻粒重和粒形QTL. 作物学报, 2010, 36: 1310–1317



Yao G X, Li J J, Zhang Q, Hu G L, Chen C, Tang B, Zhang H L, Li Z C. QTLs for grain weight and grain shape using 4NILs. Acta Agron Sin, 2010, 36: 1310–1317 (in Chinese with English abstract)

[1] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[2] 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146.
[3] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[4] 伦珠朗杰,李慧慧,郭刚刚,其美旺姆,高丽云,唐亚伟,尼玛扎西,达瓦顿珠,卓嘎. 西藏青稞冬春性鉴定及抽穗期多样性与稳定性分析[J]. 作物学报, 2019, 45(12): 1796-1805.
[5] 龙海馨,邱海阳,MuhammadUZAIR,房静静,赵金凤,李学勇. 水稻窄叶突变体nal20的表型分析与基因定位[J]. 作物学报, 2018, 44(9): 1301-1310.
[6] 董骥驰,杨靖,郭涛,陈立凯,陈志强,王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位[J]. 作物学报, 2018, 44(6): 938-946.
[7] 崔国庆,王世明,马福盈,汪会,向朝中,李云峰,何光华,张长伟,杨正林,凌英华,赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位[J]. 作物学报, 2018, 44(10): 1477-1484.
[8] 周勇,陶亚军,姚 锐,李 畅,谭文琛,裔传灯,龚志云,梁国华*. 利用染色体片段代换系定位水稻叶片形态性状QTL[J]. 作物学报, 2017, 43(11): 1650-1657.
[9] 申聪聪,朱亚军,陈凯,陈慧珍,吴志超,孟丽君,徐建龙. 利用水稻MAGIC群体关联定位抽穗期和株高QTL[J]. 作物学报, 2017, 43(11): 1611-1621.
[10] 周可,李燕,王世明,崔国庆,杨正林,何光华,凌英华,赵芳明. 水稻紫鞘染色体片段代换系Z519的鉴定及PSH1候选基因分析[J]. 作物学报, 2017, 43(07): 974-982.
[11] 童治军,焦芳婵,方敦煌,陈学军,吴兴富,曾建敏,谢贺,张谊寒,肖炳光*. 烟草染色体片段代换系的构建与遗传评价[J]. 作物学报, 2016, 42(11): 1609-1619.
[12] 彭倩,薛亚东,张向歌,李慧敏,孙高阳,李卫华,谢慧玲,汤继华. 利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点[J]. 作物学报, 2016, 42(04): 482-491.
[13] 刘鑫燕,朱孔志,张昌泉,洪燃,孙鹏,汤述翥,顾铭洪,刘巧泉. 利用9311来源的粳型染色体片段代换系定位控制稻米糊化温度的微效QTL[J]. 作物学报, 2014, 40(10): 1740-1747.
[14] 陈玉宇,朱玉君,张宏伟,王琳琳,樊叶杨,庄杰云. 水稻第1染色体长臂上微效千粒重QTL qTGW1.2的验证与分解[J]. 作物学报, 2014, 40(05): 761-768.
[15] 何蕊,石玉真,张金凤,梁燕,张保才,李俊文,王涛,龚举武,刘爱英,商海红,巩万奎,白志川,袁有禄. 利用染色体片段代换系定位陆地棉株高QTL[J]. 作物学报, 2014, 40(03): 457-465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!