欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (6): 938-946.doi: 10.3724/SP.J.1006.2018.00938

• 研究简报 • 上一篇    

基于高密度Bin图谱的水稻抽穗期QTL定位

董骥驰,杨靖,郭涛,陈立凯,陈志强(),王慧()   

  1. 华南农业大学 / 国家植物航天育种工程技术研究中心, 广东广州 510642
  • 收稿日期:2017-12-14 接受日期:2018-03-25 出版日期:2018-06-12 网络出版日期:2018-04-16
  • 通讯作者: 陈志强,王慧
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-01-12);国家重点研发计划项目(2016YFD0102102);广东省应用型研发项目资助(2015B020231011)

QTL Mapping for Heading Date in Rice Using High-density Bin Map

Ji-Chi DONG,Jing YANG,Tao GUO,Li-Kai CHEN,Zhi-Qiang CHEN(),Hui WANG()   

  1. National Engineering Research Centre of Plant Space Breeding / South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2017-12-14 Accepted:2018-03-25 Published:2018-06-12 Published online:2018-04-16
  • Contact: Zhi-Qiang CHEN,Hui WANG
  • Supported by:
    This study was supported by the China Agriculture Research System(CARS-01-12);the National Key Research and Development Program of China(2016YFD0102102);the Research and Development Program for Application in Guangdong Province(2015B020231011)

摘要:

以粳稻品种02428和籼稻品种玉针香进行杂交, 按单粒传法连续自交10代, 得到包含192个株系的重组自交系(RIL)作图群体。通过对两亲本重测序及RIL群体简化基因组测序, 构建了包含2711个Bin标记的高密度遗传图谱。该图谱各染色体标记数在162~311个之间, 标记间平均物理距离为137.68 kb。将亲本及192个株系分别于4个环境下采用随机区组种植, 并记录抽穗期。使用WinQTL Cartographer 2.5软件的CIM分析方法, 进行抽穗期相关QTL检测及定位。在4个环境下定位到影响抽穗期的QTL共14个, 分布于第1、第2、第3、第7、第8、第9和第10染色体。其中, qHD2.2qHD10.2能在3个环境中被重复检测到, 表型贡献率分别为5.14%~11.15%和5.35%~16.97%, 分别能缩短抽穗期1.66 d和1.56 d, 具有聚合育种的应用价值。通过物理位置比对, 14个QTL中有11个与前人定位在相同或邻近区域, qHD1.1、qHD2.2qHD9.1尚未见报道。经对qHD2.2详细分析, 在其染色体区间内找到3个与抽穗期相关的注释基因LOC_Os02g46450LOC_Os02g46710LOC_Os02g46940, 其中LOC_Os02g46450已被克隆。测序分析发现, 这3个基因在两亲本间都存在差异, 可作为候选基因。

关键词: 水稻, 抽穗期, Bin图谱, QTL定位

Abstract:

A recombination inbred lines (RIL) population including 192 lines derived from an inter-subspecific cross between indica rice ‘Yuzhenxiang’ and japonica rice ‘02428’ was used in the experiment. The two parent varieties and RIL population were separately sequenced by Whole Genome Sequencing (WGS) and Genotyping-By-Sequencing (GBS) to construct a genetic linkage map with 2711 recombination Bin markers. The number of markers on 12 chromosomes ranged from 162 to 311, and the average physical distance between two markers was 137.68 kb. The WinQTL Cartographer 2.5 was used to analysis QTLs associated with heading date in four different environments. A total of 14 QTLs associated with heading date were detected on chromosomes 1, 2, 3, 7, 8, 9, and 10. Among them, qHD2.2 and qHD10.2, which explained 5.14%-11.15% and 5.35%-16.97% of the total phenotypic variation for heading date separately, could be detected in three environments and shorting heading date about 1.66 days and 1.56 days on average. The two QTLs could inherit stablely, having a good potential to be applied in QTL pyramiding. After comparing the physical positions of these QTLs with those previously reported, we found 11 QTLs were located in the same or near position, among them qHD1.1, qHD2.2, and qHD9.1 were newly reported. Furthermore, we found one cloned gene LOC_Os02g46450 and two annotated genes LOC_Os02g46710 and LOC_Os02g46940 in the genomic region of qHD2.2, might be related to heading date. DNA sequence comparison between YZX and 02428 revealed that all the three genes could be candidate genes.

Key words: rice, heading date, Bin map, QTL mapping

图1

遗传标记在染色体上的分布及QTL位置 每条染色体上的黑色线条代表Bin标记所在位置; 红色字体为已克隆QTL; 蓝色字体为新发现的QTL。"

表1

02428与玉针香抽穗期天数比较"

环境
Environment
平均值Average (d) 变异系数CV (%) 差异
Difference
02428 玉针香 Yuzhenxiang 02428 玉针香 Yuzhenxiang
E1 91.36 97.00 1.08 1.57 -5.64**
E2 64.11 69.27 3.25 3.60 -5.16**
E3 89.20 97.03 0.84 0.76 -7.83**
E4 65.00 70.33 3.91 3.75 -5.33**

表2

RIL群体抽穗期性状表现"

环境
Environment
平均值±标准差
Mean ± SD
变异范围
Range
峰度
Kurtosis
偏度
Skewness
E1 95.64±6.25 81.33-117.83 0.44 0.60
E2 69.15±4.92 53.13-85.40 0.30 0.27
E3 95.29±4.99 81.00-110.30 0.43 0.11
E4 70.54±4.15 61.30-87.50 0.48 0.46

图2

玉针香/02428重组自交系及亲本的抽穗期表型分布特征"

表3

4个环境下检测到的抽穗期QTL"

环境
Environ- ment
QTL 染色体
Chr.
位置
Peak position (cM)
LOD 加性效应1)
Additive effect1)
贡献率
Variation
explained (%)
Bin标记区间
Bin marker
interval
置信区间
Confidence interval
(Mb)
E1 qHD2.2 2 178.2 3.0 -1.5 5.1 mk487-491 28.25-28.65
E1 qHD3.1 3 194.2 2.9 -1.4 4.7 mk813-814 30.55-30.65
E1 qHD3.2 3 205.1 3.2 -1.5 5.2 mk826-831 31.85-32.45
E1 qHD3.3 3 211.2 3.2 -1.5 5.3 mk836-840 33.10-33.55
E1 qHD7.1 7 48.8 4.2 1.7 7.0 mk1618-1620 8.65-8.85
E1 qHD8.1 8 42.4 5.6 2.0 9.5 mk1821-1824 4.20-4.55
E1 qHD8.2 8 49.3 4.3 1.7 7.4 mk1825-1830 4.65-5.15
E1 qHD10.1 10 56.7 3.5 -1.6 6.7 mk2244-2247 16.35-16.65
E1 qHD10.2 10 64.8 3.2 -1.5 5.4 mk2248-2253 16.75-17.25
E2 qHD2.1 2 173.6 3.2 -1.3 5.8 mk481-488 27.60-28.35
E2 qHD2.2 2 179.7 5.0 -1.6 9.5 mk489-491 28.45-28.65
E2 qHD7.2 7 118.4 3.0 -1.2 5.2 mk1723-1727 22.05-22.55
E2 qHD10.2 10 62.1 4.5 -1.4 8.2 mk2248-2253 16.75-17.25
E2 qHD10.3 10 67.4 4.1 -1.4 7.5 mk2258-2260 17.75-17.95
E3 qHD1.1 1 160.1 2.5 -1.3 4.4 mk185-186 25.95-26.05
E3 qHD2.2 2 175.2 5.9 -1.9 11.1 mk486-491 28.15-28.65
E3 qHD8.1 8 42.4 3.9 2.4 7.4 mk1821-1824 4.20-4.55
E4 qHD3.1 3 197.3 3.4 -1.0 5.6 mk812-818 30.45-31.05
E4 qHD3.2 3 205.1 3.0 -1.0 4.9 mk826-831 31.85-32.45
E4 qHD9.1 9 125.4 2.8 -1.0 4.6 mk2088-2090 16.55-16.75
E4 qHD10.2 10 63.5 9.6 -1.7 17.0 mk2249-2250 16.85-16.95
E4 qHD10.3 10 70.0 7.1 -1.5 13.5 mk2259-2260 17.85-17.95

图3

玉针香与02428之间候选基因的结构和变异 A: LOC_Os02g46450; B: LOC_Os02g46710; C: LOC_Os02g46940。黑色框: 外显子; 灰色部分: 编码序列; 红色箭头: SNP; 带黑点红色箭头: 错义突变; 蓝色箭头: 插入缺失。"

表4

QTL置信区间内注释基因筛选"

QTL 染色体
Chromosome
置信区间
Confidence interval (Mb)
抽穗期相关注释(克隆)基因1)
Annotated (cloned) gene1)
qHD1.1 1 25.95-26.05 LOC_Os01g45760
qHD2.1 2 27.60-28.35 OsPIE1 (LOC_Os02g46450)
qHD2.2 2 28.45-28.65 LOC_Os02g46710; LOC_Os02g46940
qHD3.1 3 30.45-31.05 LOC_Os03g53190; LOC_Os03g54160; LOC_Os03g54170
qHD3.2 3 31.85-32.45 LOC_Os03g55990
qHD3.3 3 33.10-33.55 LOC_Os03g58400; LOC_Os03g58530; LOC_Os03g58530
qHD7.1 7 8.65-8.85
qHD7.2 7 22.05-22.55
qHD8.1 8 4.20-4.55 DTH8 (LOC_Os08g07740)
qHD8.2 8 4.65-5.15 LOC_Os08g08210; LOC_Os08g08830
qHD9.1 9 16.55-16.75
qHD10.1 10 16.35-16.65
qHD10.2 10 16.85-16.95 Ehd1 (LOC_Os10g32600)
qHD10.3 10 17.85-17.95
[1] Fujino K, Sekiguchi H . Mapping of quantitative trait loci controlling heading date among rice cultivars in the northernmost region of Japan. Breed Sci, 2008,58:367-373
doi: 10.1270/jsbbs.58.367
[2] Cheng L R, Wang J M, Ye G, Luo C G, Xu J L, Li Z K . Identification of stably expressed QTL for heading date using reciprocal introgression line and recombinant inbred line populations in rice. Genet Res, 2012,94:245-253
doi: 10.1017/S0016672312000444 pmid: 23298447
[3] 戴高兴, 杨占烈, 邓国富, 张迎信, 王会民, 翟荣荣, 曹立勇, 程式华 . 超级杂交稻协优9308重组自交系主茎叶片数的动态QTL分析. 中国水稻科学, 2012,26:291-296
Dai G X, Yang Z L, Deng G F, Zhang Y X, Wang H M, Zhai R R, Cao L Y, Cheng S H . QTL analysis for leaf number on main stem in RILs of super hybrid rice Xieyou 9308. Chin J Rice Sci, 2012,26:291-296 (in Chinese with English abstract)
[4] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y . Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000,12:2473-2484
[5] Takahashi Y, Shomura A, Sasaki T, Yano M . Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001,98:7922-7927
doi: 10.1073/pnas.111136798
[6] Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M . Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002,43:1096-1105
doi: 10.1093/pcp/pcf156
[7] Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A . Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Gene Dev, 2004,18:926-936
[8] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q . Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767
[9] Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J . DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010,153:1747-1758
doi: 10.1104/pp.110.156943 pmid: 20566706
[10] Bian X F, Liu X, Zhao Z G, Jiang L, Gao H, Zhang Y H, Zheng M, Chen L M, Liu S J, Zhai H Q . Heading date gene, dth3 controlled late flowering in O. glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep, 2011,30:2243-2254
[11] Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z . A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height and heading date in rice. Mol Plant, 2011,4:319-330
doi: 10.1093/mp/ssq070
[12] Matsubara K, Ogisotanaka E, Hori K, Ebana K, Ando T, Yano M . Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol, 2012,53:709-716
doi: 10.1093/pcp/pcs028 pmid: 22399582
[13] Gao H, Zheng X, Fei G, Chen J, Jin M, Ren Y, Wu W, Zhou K, Sheng P, Zhou F, Jiang L, Wang J, Zhang X, Guo X, Wang J, Cheng Z, Wu C, Wang H, Wan J . Ehd4 encodes a novel and Oryza-Genus-Specific regulator of photoperiodic flowering in rice. PLoS Genet, 2013,9:e1003281
doi: 10.1371/journal.pgen.1003281 pmid: 3578780
[14] Hori K, Ogisotanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M . Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J Cell Mol Biol, 2013,76:36-46
[15] Koo B H, Yoo S C, Park J W, Kwon C T, Lee B D, An G, Zhang Z Y, Li J J, Li Z C, Paek N C . Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant, 2013,6:1877-1888
doi: 10.1093/mp/sst088 pmid: 23713079
[16] Ogisotanaka E, Matsubara K, Yamamoto S, Nonoue Y, Wu J, Fujisawa H, Ishikubo H, Tanaka T, Ando T, Matsumoto T . Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice. PLoS One, 2013,8:e75959
[17] Wu W, Zheng X M, Lu G, Zhong Z, Gao H, Chen L, Wu C, Wang H J, Wang Q, Zhou K, Wang J, Wu F, Zhang X, Guo X, Cheng Z, Lei C, Lin Q, Jiang L, Wang H, Ge S, Wan J . Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA, 2013,110:2775-2780
doi: 10.1073/pnas.1213962110 pmid: 23388640
[18] Sun B, Zhan X D, Lin Z C, Wu W X, Yu P, Zhang Y X, Sun L P, Cao L Y, Cheng S H . Fine mapping and candidate gene analysis of qHD5, a novel major QTL with pleiotropism for yield-related traits in rice ( Oryza sativa L.). Theor Appl Genet, 2016,130:1-12
[19] Shen G, Xing Y . Two novel QTLs for heading date are identified using a set of chromosome segment substitution lines in rice ( Oryza sativa L.). J Genet Genomics, 2014,41:659-662
[20] Hori K, Nonoue Y, Ono N, Shibaya T, Ebana K, Matsubara K, Ogisotanaka E, Tanabata T, Sugimoto K, Taguchishiobara F . Genetic architecture of variation in heading date among Asian rice accessions. BMC Plant Biol, 2015,15:115
doi: 10.1186/s12870-015-0501-x
[21] Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q . Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA, 2010,107:10578-10583
doi: 10.1073/pnas.1005931107 pmid: 20498060
[22] Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q . Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2012,6:e17595
[23] Chen L, Gao W, Guo T, Huang C, Huang M, Wang J, Xiao W, Yang G, Liu Y, Wang H, Chen Z. A genotyping platform assembled with high-throughput DNA extraction, codominant functional markers, and automated CE system to accelerate marker-assisted improvement of rice. Mol Breed, 2016, 36: 123,
[24] McCouch S R . Gene nomenclature system for rice. Rice, 2008,1:72-84
doi: 10.1007/s12284-008-9004-9
[25] Golicz A A, Bayer P E, Edwards D . Skim-based genotyping by sequencing. Methods Mol Biol, 2015,1245:257-270
doi: 10.1007/978-1-4939-1966-6
[26] Yu H, Xie W, Li J, Zhou F, Zhang Q . A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J, 2014,12:28-37
doi: 10.1111/pbi.12113
[27] Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X, Zhu L H . Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars ( Oryza sativa L.). Theor Appl Genet, 2000,101:569-573
doi: 10.1007/s001220051517
[28] Zhou Y, Li W, Wu W, Chen Q, Mao D, Worland A J . Genetic dissection of heading time and its components in rice. Theor Appl Genet, 2001,102:1236-1242
doi: 10.1007/s001220100539
[29] Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S , Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL×environment interactions in rice: I. Heading date and plant height. Theor Appl Genet, 2003,108:141-153
doi: 10.1007/s00122-003-1401-2 pmid: 12961067
[30] Xiao J, Li J, Yuan L, Tanksley S D . Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996,92:230-244
doi: 10.1007/BF00223380 pmid: 24166172
[31] Thomson M J, Tai T H, Mcclung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P , McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003,107:479-493
doi: 10.1007/s00122-003-1270-8 pmid: 12736777
[32] Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K . Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003,107:89-101
doi: 10.1007/s00122-004-1890-7 pmid: 15647921
[33] Takeuchi Y, Hayasaka H, Chiba B, Tanaka I, Shimano T, Yamagishi M, Nagano K, Sasaki T, Yano M . Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate japonica rice. Breed Sci, 2001,51:191-197
doi: 10.1270/jsbbs.51.191
[34] Sarma R N, Gill B S, Sasaki T, Galiba G, Sutka J, Laurie D A, Snape J W . Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet, 1998,97:103-109
doi: 10.1007/s001220050872
[35] Lin H, Liang Z W, Sasaki T, Yano M . Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breed Sci, 2003,53:51-59
doi: 10.1270/jsbbs.53.51
[36] Jiang L, Xu J, Wei X, Wang S, Tang J, Zhai H, Wan J . The inheritance of early heading in the rice variety USSR5. J Genet Genomics, 2007,34:46-55
doi: 10.1016/S1673-8527(07)60006-X pmid: 17469777
[37] 国广泰史, 钱前, 佐藤宏之, 滕胜, 曾大力, 藤本宽, 朱立煌 . 水稻纹枯病抗性QTL分析. 遗传学报, 2002,29:50-55
Kunihiro Y, Qian Q, Sato H, Teng S, Zeng D L, Fujimoto K, Zhu L H . QTL analysis of sheath blight resistance in rice ( Oryza sativa L.). Acta Genet Sin, 2002,29:50-55 (in Chinese with English abstract)
[38] Wang C M, Yasui H, Yoshimura A, Wan J M, Zhai H Q . Identification of quantitative trait loci controlling F2 sterility and heading date in rice. Acta Genet Sin, 2002,29:339-342
[39] Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L . Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor Appl Genet, 1996,93:1211-1217
doi: 10.1007/BF00223452 pmid: 24162532
[40] 谭震波, 沈利爽, 况浩池, 陆朝福, 陈英, 周开达, 朱立煌 . 水稻上部节间长度等数量性状基因的定位及其遗传效应分析. 遗传学报, 1996,23:439-446
doi: 10.1007/BF02951625
Tan Z B, Shen L S, Kuang H C, Lu C F, Chen Y, Zhou K D, Zhu L H . Identification of QTLs for lengths of the top internodes and other traits in rice and analysis of their genetic effects. Acta Genet Sin, 1996,23:439-446 (in Chinese with English abstract)
doi: 10.1007/BF02951625
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!