作物学报 ›› 2015, Vol. 41 ›› Issue (05): 673-682.doi: 10.3724/SP.J.1006.2015.00673
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
李倩1,2,王景一2,毛新国2,李昂2,高丽锋2,刘惠民1,景蕊莲2,*
LI Qian1,2,WANG Jing-Yi2,MAO Xin-Guo2,Li Ang2,GAO Li-Feng2,LIU Hui-Min1,JING Rui-Lian2,*
摘要:
脂质转运蛋白(lipid transfer protein, LTP)是广泛存在于植物中的一类小分子蛋白,因其能在植物细胞膜间运输脂类物质而得名,在植物角质层合成和适应多种环境胁迫中起重要作用。本研究利用同源克隆方法得到TaLTP-s的cDNA全长序列510 bp,开放阅读框为339 bp,编码112个氨基酸。利用RIL群体将TaLTP-s定位在染色体1A上,距离两侧标记WMC449和WMC93的遗传距离分别为2.1 cM和5.9 cM。通过原生质体亚细胞定位显示TaLTP-s定位于细胞膜和细胞质中。小麦开花期TaLTP-s在小花中表达量较高,尤其是在花药中的表达量远高于在根和叶中。在ABA、PEG、NaCl及4℃低温胁迫诱导下,小麦TaLTP-s均上调表达,可能与抗逆性调节相关。在高盐胁迫处理下,转基因拟南芥幼苗的细胞膜稳定性和存活率显著高于野生型。研究结果为利用小麦脂质转运蛋白基因改良作物抗逆性奠定了基础。
[1]Kader J C. Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 627–654[2]Jose E M, Gomis R F X, Puigdomenech P. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem, 2004, 42: 355–365[3]Douliez J P, Michon T, Elmorjani K, Marion D. Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. Cereal Sci, 2000, 32: 1–20[4]Lauga B, Charbonnel C L, Combes D. Characterization of MZm3-3, a Zea mays tapetum-specific transcript. Plant Sci, 2000, 157: 65–75[5]Debono A, Yeats T H, Rose J K, Bird D, Jetter R, Kunst L, Samuels L. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell, 2009, 21: 1230–1238[6]Cameron K D, Teece M A, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol, 2006, 140: 176–183[7]Wu G, Robertson A J, Liu X, Zheng P, Wilen R W, Nesbitt N T, Gusta L V. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis). J Plant Physiol, 2004, 161: 449–458[8]Pitzschke A, Datta S, Persak H. Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Mol Plant, 2014, 7: 722–738[9]Maldonado A M, Doerner P, Dixon R A, Lamb C J, Cameron R K. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 2002, 419: 399–403[10]Li H, Zhang D. Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav, 2010, 5: 1121–1123[11]Zhang D, Liang W, Yin C, Zong J, Gu F, Zhang D. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol, 2010, 154: 149–162[12]Rodrigues F D G J, De Laia M, Nhani-Jr A, Galbiati J, Ferro M I T, Ferro J, Zingaretti S. Sugarcane genes differentially expressed during water deficit. Biol Plant, 2011, 55: 43–53[13]Choi A M, Lee S B, Cho S H, Hwang I, Hur C G, Suh M C. Isolation and characterization of multiple abundant lipid transfer protein isoforms in developing sesame (Sesamum indicum L.) seeds. Plant Physiol Biochem, 2008, 46: 127–139[14]Jung H W, Kim K D, Wang H B K. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta, 2005, 221: 361–373[15]Arondel V V, Vergnolle C, Cantrel C, Kader J. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci, 2000, 157: 1–12[16]Boutrot F, Chantret N, Gautier M F. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics, 2008, 9: 86[17]Feng J X, Ji S J, Shi Y H, Xu Y, Wei G, Zhu Y X. Analysis of five differentially expressed gene families in fast elongating cotton fiber. Acta Biochim Biophys Sin (Shanghai), 2004, 36: 51–56[18]Boutrot F, Meynard D, Guiderdoni E, Joudrier P, Gautier M F. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice. Planta, 2007, 225: 843–862[19]Jang C S, Lee H J, Chang S J, Seo Y W. Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.). Plant Sci, 2004, 167: 995–1001[20]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402–408[21]Tae H K, Moon C K, Jong H P, Seong S H, Byung R K, Byoung Y M, Mi C S, Sung H C. Differential expression of rice lipid transfer protein gene (LTP) classes in response to abscisic acid, salt, salicylic acid, and the fungal pathogen magnaporthe grisea. J Plant Biol, 2006, 49: 371–375[22]Thoma S, Hecht U, Kippers A, Botella J, De Vries S, Somerville C. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol, 1994, 105: 35–45[23]Guo C, Ge X, Ma H. The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. Plant Mol Biol, 2013, 82: 239–253[24]Su J Y, Zheng Q, Li H W, Li B, Jing R L, Tong Y P, Li Z S. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci, 2009, 176: 824–836[25]Yang D L, Jing R L, Chang X P, Li W. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics, 2007, 176: 571–584[26]Guo L, Yang H, Zhang X, Yang S. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot, 2013, 64: 1755–1767[27]Iraki N M, Singh N, Bressan R A, Carpita N C. Cell walls of tobacco cells and changes in composition associated with reduced growth upon adaptation to water and saline stress. Plant Physiol, 1989, 91: 48–53[28]Sterk P, Booij H, Schellekens G A, Van Kammen A, De Vries S C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell, 1991, 3: 907–921[29]Cameron K D, Teece M A, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol, 2006, 140: 176–183[30]Urao T, Yamaguchi S K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993, 5: 1529–1539[31]Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi S K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[5] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[6] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[7] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[8] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[9] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[10] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
[11] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[12] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[13] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[14] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[15] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
|