欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (05): 717-724.doi: 10.3724/SP.J.1006.2015.00717

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗转录激活因子ScCBF1基因的克隆与表达分析

成伟,郑艳茹,葛丹凤,程光远,翟玉山,邓宇晴,彭磊,谭向尧,徐景升*   

  1. 福建农林大学 / 农业部福建甘蔗生物学与遗传改良重点实验室,福建福州 350002
  • 收稿日期:2014-12-09 修回日期:2015-03-19 出版日期:2015-05-12 网络出版日期:2015-03-30
  • 通讯作者: 徐景升,E-mail: xujingsheng@126.com, Tel: 13959174787
  • 基金资助:
    本课题由国家高技术研究发展计划(863计划)(2013AA102604)和国家自然科学基金(31171605, 31371688)资助。

Molecular Cloning and Expression Analysis of Transcriptional Activators ScCBF1 Gene from Sugarcane

CHENG Wei,ZHENG Yan-Ru,GE Dan-Feng,CHENG Guang-Yuan,ZHAI Yu-Shan,DENG Yu-Qing,PENG Lei,TAN Xiang-Yao,XU Jing-Sheng*   

  1. Fujian Agriculture and Forestry University, Key laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fuzhou 350002, China
  • Received:2014-12-09 Revised:2015-03-19 Published:2015-05-12 Published online:2015-03-30
  • Contact: 徐景升,E-mail: xujingsheng@126.com, Tel: 13959174787

摘要:

植物在受到低温、高盐、干旱等非生物逆境胁迫后,CBF结合因子(C-repeat/dehydration-responsive element binding factor)会诱导一系列非生物胁迫应答基因的表达,在提高植物抗逆性方面具有重要作用。本研究利用生物信息学和RT-PCR (reverse transcription-polymerase chain reaction)方法从甘蔗中克隆到1个新的CBF类基因,命名为ScCBF1。该基因的开放读码框(open reading frame, ORF)长度为603 bp,编码200个氨基酸,编码蛋白相对分子质量为22.80 kD,理论等电点为10.31。氨基酸序列比对结果表明,ScCBF1与高粱(Sorghum bicolor)和玉米(Zea mays)中该蛋白相似度分别是96%94%。进化分析表明ScCBF1与高粱的亲缘关系最近。qRT-PCR表达分析结果表明,ScCBF1在甘蔗根、茎、叶中均有表达,但在根中表达量最高。ScCBF1在低温、干旱、脱落酸(ABA)胁迫下诱导表达,而高盐抑制ScCBF1的表达。成功构建了原核表达载体pGEX-6P-1-ScCBF1,通过IPTG诱导,实现了ScCBF1蛋白在大肠杆菌中的表达。

关键词: 甘蔗, CBF结合因子, 荧光定量PCR, 原核表达

Abstract:

C-repeat/dehydration-responsive element binding factor (CBF) plays an important role in improving plant stress resistance. The CBF can induce a series of abiotic stress responsive gene expression when the plants are subjected to low temperature, high salt, drought or other abiotic stresses. In this paper, a new CBF-like gene, designed as ScCBF1, was cloned by bioinformatics and RT-PCR method from sugarcane. Sequence analysis showed that ScCBF1 contained a 603 bp open reading frame (ORF) and encoded a deduced protein of 200 amino acids. Its molecular weight and isoelectric point were predicted as 22.80 kD and 10.31, respectively. The amino acid sequence alignment results showed that ScCBF1 shared the similarity of 96% and 94% with the CBF1 protein from Sorghum bicolor and Zea mays, respectively. Phylogenetic tree analysis revealed that ScCBF1 had closer relationships with Sorghum bicolor. qRT-PCR showed that ScCBF1 expressed in root, stem and leaf in sugarcane with the highest expression level in roots. ScCBF1 gene was induced by low temperature, drought or abscisic acid (ABA), but was downregulated under high salinity. The protokaryotic expression vector pGEX-6P-1-ScCBF1 was successfully constructed and transformed into E. coli. Under the induction of IPTG, ScCBF1was successfully expressed in E. coli. This study sheds light on the understanding of the function of ScCBF1.

Key words: Sugarcane, C-repeat/Dehydration-responsive element binding factor, Quantitative Real-Time PCR, Prokaryotic expression

[1]Xin Z, Browse J. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell & Environ, 2000, 23: 893–902



[2]Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci, 1997, 94: 1035–1040



[3]Liu Q, Zhao N M, Yamaguchi-Shinozaki K, Shinozaki K. Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chin Sci Bull, 2000, 45: 970–975



[4]Guy C L, Niemi K J, Brambl R. Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci, 1985, 82: 3673–3677



[5]Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell Online, 2002, 14: 1675–1690



[6]Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124: 1854–1865



[7]Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104–106



[8]Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol, 2004, 45: 1042–1052



[9]Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-, salt- and cold-responsive gene expression. Plant J, 2003, 33: 751–763



[10]Gao M J, Allard G, Byass L, Flanagan A M, Singh J. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol, 2002, 49: 459–471



[11]陈如凯. 现代甘蔗遗传育种. 北京:中国农业出版社, 2010. pp 351–352



Chen R K. Modern sugarcane genetic breeding, Beijing: China Agriculture Press, 2010. pp 351–352 (in Chinese)



[12]Li D M, Staehelin C, Wang W T, Peng S L. Molecular cloning and characterization of a chitinase-homologous gene from Mikania micrantha infected by Cuscuta campestris. Plant Mol Biol Rep, 2010, 28: 90–101



[13]Damaj M B, Kumpatla S P, Emani C, Beremand P D, Reddy A S, Rathore K S, Buenrostro-Nava M T, Curtis I S, Thomas T L, Mirkov T E. Sugarcane DIRIGENT and O-METHYLTRANSFERASE promoters confer stem-regulated gene expression in diverse monocots. Planta, 2010, 231: 1439–1458



[14]阙友雄, 杨志霞, 许莉萍, 陈如凯. 对甘蔗受黑穗病菌侵染后差异表达基因的分离与鉴定. 作物学报, 2009, 35: 452–458



Que Y X, Yang Z X, Xu L P, Chen R K. Isolation and identification of differentially expressed genes in sugarcane infected by Ustilago scitaminea. Acta Agron Sinica, 2009, 35: 452–458 (in Chinese with English abstract)



[15]Guo J L, Xu L P, Fang J P, Su Y C, Fu H Y, Que Y X, Xu J S. A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep, 2012, 31: 1801–1812



[16]Iskandar H M, Simpson R S, Casu R E, Bonnett G D, Maclean D J, Manners J M. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep, 2004, 22: 325–337



[17]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–△△CT method. Methods, 2001, 25: 402–408



[18]Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998, 16: 433–442



[19]Xiong Y, Fei S Z. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta, 2006, 224: 878–888



[20]Chen M, Xu Z S, Xia L Q, Li L C, Cheng X G, Dong J H, Wang Q Y, Ma Y Z. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). J Exp Bot, 2009, 60: 121–135



[21]Lin Y, Chen D, Paul M, Zu Y, Tang Z. Loss-of-function mutation of EIN2 in Arabidopsis exaggerates oxidative stress induced by salinity. Acta Physiol Plant, 2013, 35: 1319–1328



[22]Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol, 2007, 64: 633–644



[23]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell Online, 1998, 10: 1391–1406



[24]Xue G P. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J, 2003, 33: 373–383



[25]Gupta K, Agarwal P K, Reddy M K, Jha B. SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep, 2010, 29: 1131–1137

[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[5] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[6] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[7] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[8] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[9] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[10] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[11] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[12] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[13] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[14] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[15] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!