作物学报 ›› 2015, Vol. 41 ›› Issue (05): 717-724.doi: 10.3724/SP.J.1006.2015.00717
成伟,郑艳茹,葛丹凤,程光远,翟玉山,邓宇晴,彭磊,谭向尧,徐景升*
CHENG Wei,ZHENG Yan-Ru,GE Dan-Feng,CHENG Guang-Yuan,ZHAI Yu-Shan,DENG Yu-Qing,PENG Lei,TAN Xiang-Yao,XU Jing-Sheng*
摘要:
植物在受到低温、高盐、干旱等非生物逆境胁迫后,CBF结合因子(C-repeat/dehydration-responsive element binding factor)会诱导一系列非生物胁迫应答基因的表达,在提高植物抗逆性方面具有重要作用。本研究利用生物信息学和RT-PCR (reverse transcription-polymerase chain reaction)方法从甘蔗中克隆到1个新的CBF类基因,命名为ScCBF1。该基因的开放读码框(open reading frame, ORF)长度为603 bp,编码200个氨基酸,编码蛋白相对分子质量为22.80 kD,理论等电点为10.31。氨基酸序列比对结果表明,ScCBF1与高粱(Sorghum bicolor)和玉米(Zea mays)中该蛋白相似度分别是96%和94%。进化分析表明ScCBF1与高粱的亲缘关系最近。qRT-PCR表达分析结果表明,ScCBF1在甘蔗根、茎、叶中均有表达,但在根中表达量最高。ScCBF1在低温、干旱、脱落酸(ABA)胁迫下诱导表达,而高盐抑制ScCBF1的表达。成功构建了原核表达载体pGEX-6P-1-ScCBF1,通过IPTG诱导,实现了ScCBF1蛋白在大肠杆菌中的表达。
[1]Xin Z, Browse J. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell & Environ, 2000, 23: 893–902[2]Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci, 1997, 94: 1035–1040[3]Liu Q, Zhao N M, Yamaguchi-Shinozaki K, Shinozaki K. Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chin Sci Bull, 2000, 45: 970–975[4]Guy C L, Niemi K J, Brambl R. Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci, 1985, 82: 3673–3677[5]Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell Online, 2002, 14: 1675–1690[6]Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124: 1854–1865[7]Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104–106[8]Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol, 2004, 45: 1042–1052[9]Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-, salt- and cold-responsive gene expression. Plant J, 2003, 33: 751–763[10]Gao M J, Allard G, Byass L, Flanagan A M, Singh J. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol, 2002, 49: 459–471[11]陈如凯. 现代甘蔗遗传育种. 北京:中国农业出版社, 2010. pp 351–352Chen R K. Modern sugarcane genetic breeding, Beijing: China Agriculture Press, 2010. pp 351–352 (in Chinese)[12]Li D M, Staehelin C, Wang W T, Peng S L. Molecular cloning and characterization of a chitinase-homologous gene from Mikania micrantha infected by Cuscuta campestris. Plant Mol Biol Rep, 2010, 28: 90–101[13]Damaj M B, Kumpatla S P, Emani C, Beremand P D, Reddy A S, Rathore K S, Buenrostro-Nava M T, Curtis I S, Thomas T L, Mirkov T E. Sugarcane DIRIGENT and O-METHYLTRANSFERASE promoters confer stem-regulated gene expression in diverse monocots. Planta, 2010, 231: 1439–1458[14]阙友雄, 杨志霞, 许莉萍, 陈如凯. 对甘蔗受黑穗病菌侵染后差异表达基因的分离与鉴定. 作物学报, 2009, 35: 452–458Que Y X, Yang Z X, Xu L P, Chen R K. Isolation and identification of differentially expressed genes in sugarcane infected by Ustilago scitaminea. Acta Agron Sinica, 2009, 35: 452–458 (in Chinese with English abstract)[15]Guo J L, Xu L P, Fang J P, Su Y C, Fu H Y, Que Y X, Xu J S. A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep, 2012, 31: 1801–1812[16]Iskandar H M, Simpson R S, Casu R E, Bonnett G D, Maclean D J, Manners J M. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep, 2004, 22: 325–337[17]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–△△CT method. Methods, 2001, 25: 402–408[18]Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998, 16: 433–442[19]Xiong Y, Fei S Z. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta, 2006, 224: 878–888[20]Chen M, Xu Z S, Xia L Q, Li L C, Cheng X G, Dong J H, Wang Q Y, Ma Y Z. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). J Exp Bot, 2009, 60: 121–135[21]Lin Y, Chen D, Paul M, Zu Y, Tang Z. Loss-of-function mutation of EIN2 in Arabidopsis exaggerates oxidative stress induced by salinity. Acta Physiol Plant, 2013, 35: 1319–1328[22]Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol, 2007, 64: 633–644[23]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell Online, 1998, 10: 1391–1406[24]Xue G P. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J, 2003, 33: 373–383[25]Gupta K, Agarwal P K, Reddy M K, Jha B. SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep, 2010, 29: 1131–1137 |
[1] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[2] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[3] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[4] | 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341. |
[5] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[6] | 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530. |
[7] | 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539. |
[8] | 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296. |
[9] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[10] | 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893. |
[11] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[12] | 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382. |
[13] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[14] | 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296. |
[15] | 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103. |
|