作物学报 ›› 2015, Vol. 41 ›› Issue (05): 725-732.doi: 10.3724/SP.J.1006.2015.00725
郑小敏,郭楠,高天姝,龚慧明,张涛
ZHENG Xiao-Min,GUO Nan,GAO Tian-Shu,GONG Hui-Ming,ZHANG Tao
摘要:
植物防御素具有广谱抗菌活性,不仅具有抗真菌、抗细菌、蛋白酶抑制和昆虫淀粉酶抑制等活性,而且参与调节植物的生长和发育。本研究根据白菜防御素基因序列设计引物,从甘蓝型油菜中克隆获得5个防御素基因,其cDNA全长325~461 bp,含有177~243 bp开放阅读框,编码58~80个氨基酸,含有8个保守Cys残基,具备Knot1功能域。系统进化分析表明,BnPDF2.1、BnPDF2.3、BnPDF2.5与拟南芥PDF2亲缘关系较近,可能具有蛋白酶抑制活性。荧光定量分析表明,防御素基因具有组织表达特异性,在花蕾和叶中表达量较高,角果中次之;经1 mmol L–1 水杨酸处理开花期油菜2 h后,防御素基因在茎、花蕾、角果中的表达量均有不同程度的上调,但在叶中表达有所下调,在根中表达无明显变化。
[1]张宏, 胡春香, 张德禄, 刘永定. 植物防御素研究进展. 西北师范大学学报, 2006, 5(42): 112–117Zhang H, Hu C X, Zhang D L, Liu Y D. The research progress on plant defensins. J Northwest Norm Univ (Nat Sci), 2006, 5(42): 112–117 (in Chinese with English abstract)[2]刘媛媛, 赵宝华. 防御素的研究进展和应用前景. 中国医药生物技术, 2009, 4: 303–306Liu Y Y, Zhao B H. The research progress and application prospect on defensins. Chin Med Biotech, 2009, 4: 303–306 (in Chinese)[3]Chen S C, Liu A R, Zou Z R. Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum. Russian J Plant Physiol, 2006, 53: 671–677[4]Oh B J, Ko M K, Kostenyuk I, Shin B, Kim K S. Coexpression of a defensin gene and a thionin-like gene via different signal transduction pathways in pepper and Colletotrichum gloeosporioides interactions. Plant Mol Biol, 1999, 41: 313–319[5]Kong M, Barnes E A, Ollendorff V, Donoghue D J. Cyclin F regulates the nuclear localization of cyclin B1 through a cyclin-cyclin interaction. EMBO J, 2000, 19: 1378–1388[6]Lobo D S, Pereira I B, Madeira L F , Medeiros L N, Cabral L M, Faria J, Bellio M, Campos R C, Linden R, Kurtenbach E. Antifungal Pisum sativum defensin 1 interacts with neurospora crassa cyclin F related to the cell cycle . Biochemistry, 2007, 46: 987–996[7]Yasuda M, Takesue F, Inutsuka S, Honda M, Nozoe T, Korenaga D. Overexpression of cyclin B1 in gastric cancer and its clinicopathological significance: an immunohisto-logical study. Cancer Res Clin Oncol, 2002, 128: 412–416[8]Sels J, Delaure S L, Aerts A M, Proost P, Cammue B P A, De Bolle M F. Use of a PTGS-MAR expression system for efficient in planta production of bioactive Arabidopsis thaliana plant defensins. Transgenic Res, 2007, 16: 531–538[9]韩青梅, 曹丽华. 水杨酸及其类似物在诱导抗性中的作用机制. 西北农林科技大学学报(自然科学版), 2001, 29: 139–143Han Q M, Cao L H. The mechanisms of salicylic acid and its analogs in induced resistance. J Northwest Sci-Tech Univ For, 2001, 29: 139–143 (in Chinese with English abstract)[10]Fragnière C, Serrano M, Abou-Mansour E, Métraux J P, L’Haridon F. Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett, 2011, 585: 1847–1852[11]刘胜毅, Bruce Fitt, 刘仁虎, Neal Evans, 董彩华, 黄永菊. 油菜防卫素和草酸氧化酶基因的克隆与诱导表达水平研究. 中国油料作物学报, 2004, 26: 43–49Liu S Y, Fitt B, Liu R H, Evans N, Dong C A, Huang Y J. Amplification of plant defensin and oxalic acid oxidase genes and their expression induced by pathogens and chemicals in Brassica napus. Chin J Oil Crop Sci, 2004, 26: 43–49(in Chinese with English abstract)[12]Chen X F, Hou X L, Zhang J Y, Zheng J Q. Molecular characterization of two important antifungal proteins isolated by downy mildew infection in non-heading Chinese cabbage. Mol Biol Rep, 2008, 35: 621–629[13]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24(8):1596–1599 [14]Oh B J, Ko M K, Kostenyuk I, Shin B, Kim K S. Coexpression of a defensin gene and a thionin-like gene via different signal transduction pathways in pepper and Colletotrichum gloeosporioides interactions. Plant Mol Biol, 1999, 41: 313–319.[15]Lin X, Kaul S, Rounsley S, Shea T P, Benito M I, Town C D, Fujii C Y, Mason T, Bowman C L, Barnstead M, Feldblyum T V, Buell C R, Ketchum K A, Lee J, Ronning C M, Koo H L, Moffat K S, Cronin L A, Shen M, Pai G, Van Aken S, Umayam L, Tallon L J, Gill J E, Adams M D, Carrera A J, Creasy T H, Goodman H M, Somerville C R, Copenhaver G P, Preuss D, Nierman W C, White O, Eisen J A, Salzberg S L, Fraser C M, Venter J C. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana, Nature, 1999, 402: 761–768[16]王芳芳. 外源水杨酸诱导苹果抗轮纹病效应的研究. 河北农业大学, 2008. pp 1–9Wang F F. Studies of Exogenous Salicylic Aicd on Inducing Apple Resistance to Apple Ring Rot Disease. MS Thesis of Agricultural University of Hebei, 2008. pp 1–9 (in Chinese with English abstract)[17]Parkin I A P, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brassica napus genome. Genome, 2003, 46: 291–303[18]Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111: 1514–1523[19]马纲, 张敏. 植物抗虫性物质及作用的多样性. 生物学通报, 2002, 37(12): 8–9Ma G, Zhang M. The diversity of plant insect resistance material and function. Bull Biol, 2002, 37(12): 8–9 (in Chinese)[20]Zhu H F, Qian W Q, Lu X Z, Li D P, Liu X, Liu K F, Wang D W. Expression patterns of purple acid phosphatas e genes in Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower. Plant Mol Biol, 2005, 59: 581–594[21]李鑫, 侯和胜. 植物类防御素基因的预测和序列分析. 植物生理学通讯, 2008, 44: 229–234Li X, Hou H S. Prediction and sequence analysis of plant defensin-like genes. Plant Physiol Commun, 2008, 44: 229–234 (in Chinese with English abstract)[22]Chang K C. Critical regulatory domains in intron 2 of a porcine sarcomeric myosin heavy chain gene. J Muscle Res Cell Motility, 2000, 21: 451–461 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[5] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[6] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[7] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[8] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[9] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[10] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[11] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[12] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[13] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[14] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[15] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
|