作物学报 ›› 2015, Vol. 41 ›› Issue (06): 972-978.doi: 10.3724/SP.J.1006.2015.00972
高启国,刘豫东,蒲全明,张林成,朱利泉,王小佳
GAO Qi-Guo1**,LIU Yu-Dong1,**,PU Quan-Ming1,ZHANG Lin-Cheng1,ZHU Li-Quan2,WANG Xiao-Jia1
摘要:
Exo
[1]Dickinson H. Dry stigmas, water and self-incompatibility in Brassica. Sex Plant Reprod, 1995, 8: 1–10[2]Samuel M A, Yee D, Haasen K E, Goring D R. ‘Self’ pollen rejection through the intersection of two cellular pathways in the Brassicaceae: self-compatbility and the compatible pollen response. In: Franklin-Tong V E, ed. Self-incompatibility in flowering plants evolution, diversity, and mechanisms. Berlin: Spring-Verlag, 2008. pp 175–191[3]Chapman L A, Goring D R. Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot, 2010, 61: 1987–1999[4]Iwano M, Takayama S. Self/non-self discrimination in angiosperm self-incompatibility. Curr Opin Plant Biol, 2012, 15: 78–83[5]Indriolo E, Goring D R. A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility. Front Plant Sci, 2014, 5: 181[6]Kachroo A, Schopfer C R, Nasrallah M E, Nasrallah J B. Alelle-specific receptor-ligand interactions in Brassica self-incompatibility. Science, 2001, 293: 1824–1826[7]Haffani Y Z, Gaude T, Cock J M, Goring D R. Antisense suppression of thioredoxin h mRNA in Brassica napus cv. Westar pistil causes a low level constitutive pollen rejection response. Plant Mol Biol, 2004, 55: 619–630[8]Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of protein during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15: 885–898[9]Samul M A, Chong Y T, Haasenn K E, Aldea-Brydges M G, Stone S L, Goring D R. Cellular pathways regulating responses to copatible and self-incompatible pollen in Brassica and Arabidopsis stigma intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 2009, 21: 2655–2571[10]Safavian D, Goring D R. Secretory activity is rapidly induced in stigmatic papillae by compatible pollen, but inhibited for self-incompatible pollen in the Brassicaceae. PloS One, 2013, 8: e84286[11]Safavian D, Jamshed M, Sankaranarayanan S, Indriolo E, Samuel M A, Goring D R. High humidity partially resecues the Arabidopsis thaliana exo70A1 stigmatic defect for accepting compatible pollen. Plant Reprod, 2014, 27: 121–127[12]Fendrych M, Synek L, Pecenková T, Toupalová H, Cole R, Drdová E, Nebesárová J, Sedinová M, Hála M, Fowler J E, Zársky V. The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell, 2010, 22: 3053–3065[13]Cvr?ková F, Grunt M, Bezvoda R, Hála M, Kulich I, Rawat A, Zárský V. Evolution of the land plant exocyst complexes. Front Plant Sci, 2012, 3: 159[14]Hála M, Cole R, Synek L, Drdová E, Pecenková T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler J E, Zárský V. An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell, 2008, 20: 1330–1345[15]Iwano M, Shiba H, Matoba K, Miwa T, Funato M, Entani T, Nakayama P, Shimosato H, Takaoka A, Isogai A, Takayama S. Actin dynamics in papilla cells of Brassica rapa during self- and cross-pollination. Plant Physiol, 2007, 144: 72–81[16]Finger F P, Hughes T E, Novick P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell, 1998, 92: 559–571[17]Boyd C, Hughes T, Pypaert M, Novick P. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J Cell Biol, 2004, 167: 889–901[18]Zajac A, Sun X, Zhang J, Guo W. Cyclical regulation of the exocyst and cell polarity determinants for polarized cell growth. Mol Biol Cell, 2005, 16: 1500–1512[19]Bendezú F O, Vincenzetti V, Martin S G. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complexto cell poles. PLoS One, 2012, 7: e40248[20]Zhang X, Zajac A, Zhang J, Wang P, Li M, Murray J, TerBush D, Guo W. The critical role of Exo84p in the organization and polarized localization of the exocyst complex. J Biol Chem, 2005, 280: 20356–20364[21]Fendrych M, Synek L, Pecenková T, Drdová E J, Sekeres J, de Rycke R, Nowack M K, Zársky V. Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol Biol Cell, 2013, 24: 510–520 |
[1] | 杨莎,李燕,郭峰,张佳蕾,孟静静,李萌,万书波,李新国. 利用酵母双杂交系统筛选花生AhCaM相互作用蛋白[J]. 作物学报, 2015, 41(07): 1056-1063. |
[2] | 许俊强,孙梓健,刘智宇,杨朴丽,汤青林,王志敏,宋明,王小佳. 结球甘蓝雌蕊调控因子SPT与HEC1的克隆及相互作用分析[J]. 作物学报, 2014, 40(06): 1011-1019. |
[3] | 杨昆, 张贺翠, Richard CONVERSE, 朱利泉, 杨永军, 薛丽琰, 罗兵, 常登龙, 高启国, 王小佳. 甘蓝自交不亲和信号转导元件ARC1与EXO70A1的相互作用[J]. 作物学报, 2011, 37(12): 2136-2144. |
[4] | 赵开军, 李岩强, 王春连, 高英. 植物天然免疫性研究进展及其对作物抗病育种的可能影响[J]. 作物学报, 2011, 37(06): 935-942. |
[5] | 孟金陵. 甘蓝型油菜与近缘种、属杂交时花粉-雌蕊相互作用的研究[J]. 作物学报, 1990, 16(01): 19-25. |
|