欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (06): 972-978.doi: 10.3724/SP.J.1006.2015.00972

• 研究简报 • 上一篇    下一篇

甘蓝BoExo70A1与BoSEC3、BoExo84蛋白相互作用的酵母双杂交检测

高启国,刘豫东,蒲全明,张林成,朱利泉,王小佳   

  1. 1 西南大学园艺园林学院 / 南方山地园艺学教育部重点实验室, 重庆 400716; 2 西南大学农学与生物科技学院, 重庆 400716
  • 收稿日期:2014-11-12 修回日期:2015-03-19 出版日期:2015-06-12 网络出版日期:2015-04-07
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2012CB113900), 国家自然科学基金项目(30900986), 中央高校基本科研业务费专项资金项目(XDJK2010B010)和重庆市自然基金重点项目(cstc2012jjB80010)资助。

Interaction Analysis of Brassica oleracea L. BoExo70A1 with BoSEC3 and BoExo84 Proteins by Using Yeast Two-hybird System

GAO Qi-Guo1**,LIU Yu-Dong1,**,PU Quan-Ming1,ZHANG Lin-Cheng1,ZHU Li-Quan2,WANG Xiao-Jia1   

  1. 1 College of Horticulture and Landscape Architecture, Southwest University / Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400716, China; 2 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2014-11-12 Revised:2015-03-19 Published:2015-06-12 Published online:2015-04-07

摘要:

Exo70A1是芸薹属作物柱头接受亲和花粉的必需因子, 可能参与了干性柱头水分分泌和花粉水合过程。本文从自交不亲和甘蓝A1柱头cDNA中获取了BoExo70A1BoSEC3BoSEC10BoSEC15BoExo84基因的编码序列, 序列分析表明BoExo70A1BoSEC3BoSEC10BoSEC15BoExo84基因分别与AtExo70A1AtSEC3AAtSEC10AtSEC15BAtExo84B基因的cDNA序列高度同源, 其编码的5个蛋白均没有信号肽, BoSEC3蛋白含有一个典型的EF-hand钙离子结合结构域。将BoExo84蛋白拆分为2个片段(BoExo84-NBoExo84-C), 并与BoSEC3BoSEC10BoSEC15蛋白编码序列一起分别亚克隆至pGADT7质粒, BoExo70A1蛋白编码序列亚克隆至pGBKT7质粒, 酵母双杂交检测结果表明BoExo70A1蛋白能与BoSEC3BoExo84-N蛋白互作, 但不能与BoSEC10BoSEC15蛋白互作, 这为深入探讨BoExo70A1蛋白乃至整个胞泌复合体在甘蓝干性柱头接受自花花粉排斥异花花粉过程中的作用机制提供了依据。

关键词: 甘蓝自交不亲和, BoExo70A1, 胞泌复合体, 相互作用

Abstract:

Exo70A1 is necessary for Brassica stigma accepting the compatible pollen, and may play an important role in regulating the movement of water from the dry stigma to the pollen grain and compatible pollen hydration. Here, the coding sequences of BoExo70A1, BoSEC3, BoSEC10, BoSEC15, and BoExo84 genes were amplified from the stigma cDNA of the highly self-incompatible Brassica oleracea L. line A1. Sequence analysis showed that the cDNA sequences of BoExo70A1, BoSEC3, BoSEC10, BoSEC15, and BoExo84 genes were highly homologous to those of AtExo70A1, AtSEC3A, AtSEC10, AtSEC15B, and AtExo84B genes respectively. No signal peptide was found in their deduced protein sequences. BoSEC3 protein contained an EF-hand calcium-binding domain. The BoExo84 protein was divided into two fragments, BoExo84-N and BoExo84-C, and then their encoding sequences were subcloned into pGADT7 vector together with those of BoSEC3, BoSEC10, and BoSEC15 proteins respectively, whereas the encoding sequence of BoExo70A1 protein was subcloned into pGBKT7 vector for analysis of the proteins interaction by yeast two-hybid system. The results showed that BoExo70A1 protein interacted with BoSEC3 or BoExo84-N protein, but not with BoSEC10 or BoSEC15 protein.

Key words: Brassica oleracea L. self-incompatibility, BoExo70A1, Exocyst complex, Interaction

[1]Dickinson H. Dry stigmas, water and self-incompatibility in Brassica. Sex Plant Reprod, 1995, 8: 1–10



[2]Samuel M A, Yee D, Haasen K E, Goring D R. ‘Self’ pollen rejection through the intersection of two cellular pathways in the Brassicaceae: self-compatbility and the compatible pollen response. In: Franklin-Tong V E, ed. Self-incompatibility in flowering plants evolution, diversity, and mechanisms. Berlin: Spring-Verlag, 2008. pp 175–191



[3]Chapman L A, Goring D R. Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot, 2010, 61: 1987–1999



[4]Iwano M, Takayama S. Self/non-self discrimination in angiosperm self-incompatibility. Curr Opin Plant Biol, 2012, 15: 78–83



[5]Indriolo E, Goring D R. A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility. Front Plant Sci, 2014, 5: 181



[6]Kachroo A, Schopfer C R, Nasrallah M E, Nasrallah J B. Alelle-specific receptor-ligand interactions in Brassica self-incompatibility. Science, 2001, 293: 1824–1826



[7]Haffani Y Z, Gaude T, Cock J M, Goring D R. Antisense suppression of thioredoxin h mRNA in Brassica napus cv. Westar pistil causes a low level constitutive pollen rejection response. Plant Mol Biol, 2004, 55: 619–630



[8]Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of protein during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15: 885–898



[9]Samul M A, Chong Y T, Haasenn K E, Aldea-Brydges M G, Stone S L, Goring D R. Cellular pathways regulating responses to copatible and self-incompatible pollen in Brassica and Arabidopsis stigma intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 2009, 21: 2655–2571



[10]Safavian D, Goring D R. Secretory activity is rapidly induced in stigmatic papillae by compatible pollen, but inhibited for self-incompatible pollen in the Brassicaceae. PloS One, 2013, 8: e84286



[11]Safavian D, Jamshed M, Sankaranarayanan S, Indriolo E, Samuel M A, Goring D R. High humidity partially resecues the Arabidopsis thaliana exo70A1 stigmatic defect for accepting compatible pollen. Plant Reprod, 2014, 27: 121–127



[12]Fendrych M, Synek L, Pecenková T, Toupalová H, Cole R, Drdová E, Nebesárová J, Sedinová M, Hála M, Fowler J E, Zársky V. The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell, 2010, 22: 3053–3065



[13]Cvr?ková F, Grunt M, Bezvoda R, Hála M, Kulich I, Rawat A, Zárský V. Evolution of the land plant exocyst complexes. Front Plant Sci, 2012, 3: 159



[14]Hála M, Cole R, Synek L, Drdová E, Pecenková T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler J E, Zárský V. An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell, 2008, 20: 1330–1345



[15]Iwano M, Shiba H, Matoba K, Miwa T, Funato M, Entani T, Nakayama P, Shimosato H, Takaoka A, Isogai A, Takayama S. Actin dynamics in papilla cells of Brassica rapa during self- and cross-pollination. Plant Physiol, 2007, 144: 72–81



[16]Finger F P, Hughes T E, Novick P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell, 1998, 92: 559–571



[17]Boyd C, Hughes T, Pypaert M, Novick P. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J Cell Biol, 2004, 167: 889–901



[18]Zajac A, Sun X, Zhang J, Guo W. Cyclical regulation of the exocyst and cell polarity determinants for polarized cell growth. Mol Biol Cell, 2005, 16: 1500–1512



[19]Bendezú F O, Vincenzetti V, Martin S G. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complexto cell poles. PLoS One, 2012, 7: e40248



[20]Zhang X, Zajac A, Zhang J, Wang P, Li M, Murray J, TerBush D, Guo W. The critical role of Exo84p in the organization and polarized localization of the exocyst complex. J Biol Chem, 2005, 280: 20356–20364



[21]Fendrych M, Synek L, Pecenková T, Drdová E J, Sekeres J, de Rycke R, Nowack M K, Zársky V. Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol Biol Cell, 2013, 24: 510–520

[1] 杨莎,李燕,郭峰,张佳蕾,孟静静,李萌,万书波,李新国. 利用酵母双杂交系统筛选花生AhCaM相互作用蛋白[J]. 作物学报, 2015, 41(07): 1056-1063.
[2] 许俊强,孙梓健,刘智宇,杨朴丽,汤青林,王志敏,宋明,王小佳. 结球甘蓝雌蕊调控因子SPT与HEC1的克隆及相互作用分析[J]. 作物学报, 2014, 40(06): 1011-1019.
[3] 杨昆, 张贺翠, Richard CONVERSE, 朱利泉, 杨永军, 薛丽琰, 罗兵, 常登龙, 高启国, 王小佳. 甘蓝自交不亲和信号转导元件ARC1与EXO70A1的相互作用[J]. 作物学报, 2011, 37(12): 2136-2144.
[4] 赵开军, 李岩强, 王春连, 高英. 植物天然免疫性研究进展及其对作物抗病育种的可能影响[J]. 作物学报, 2011, 37(06): 935-942.
[5] 孟金陵. 甘蓝型油菜与近缘种、属杂交时花粉-雌蕊相互作用的研究[J]. 作物学报, 1990, 16(01): 19-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!