作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1682-1691.doi: 10.3724/SP.J.1006.2015.01682
冯露1,2,钟理2,3,陈丹丹4,马有志2,徐兆师2,李连城2,周永斌2,陈明2,*,张小红1,
FENG Lu1,2,ZHONG Li2,3,CHEN Dan-Dan4,MA You-Zhi2,XU Zhao-Shi2,LI Lian-Cheng2,ZHOU Yong-Bin2,CHEN Ming2,*,ZHANG Xiao-Hong1,*
摘要:
在植物生长、发育和胁迫响应等生物学过程中发挥重要作用。本研究通过序列比对,从谷子中克隆到亚基基因。进化树分析显示,基因在进化上属于亚族,与玉米亚基基因亲缘关系较近。表达谱分析结果显示,在高盐、茉莉酸甲酯、水杨酸和脱落酸处理下表达上调,在低温和低氮处理下表达下调。亚细胞定位分析表明定位于液泡膜上。遗传转化拟南芥的耐盐性鉴定表明,在盐处理条件下,转基因株系的种子萌发率、幼苗主根长、植株鲜重及存活率显著高于野生型的。与野生型拟南芥植株相比,过表达植株体内含量减少,体内相对含水量提高。此外,萌发试验结果显示,在种子萌发后期,过表达植株对更加敏感。研究表明,谷子可以显著提高拟南芥耐盐性,这可能与其正向调控信号途径以及减少植株体内积累和水分散失有关。
[1]Agarwal S, Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant, 2004, 48: 555–560[2]Niu X M, Narasimhan M L, Salzman R A, Bressan R A, Hasegawa P M. NaCl regulation of plasma membrane H+-ATPase gene expression inaglycophyte and halophyte. Plant Physiol, 1993, 103: 713–718[3]Zhu J K. Plant salt tolerance. Trends Plant Sci, 2001, 6: 66–71[4]Li P H, Chen M, Wang B S. Effect of K+ nutrition on growth and activity of leaf tonoplast V-H+-ATPase and V-PPase of suaed salsa under NaCl stress. Acta Bot Sin, 2002, 44: 433–440[5]Sze H, Schumacher K, Müller LM, Padmanaban S, Taiz L. A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci, 2002, 7: 157–161[6]Kluge C, Lahr L, Hanitzsch L, Bolte S, Golldack D, Dietz K J. New insight into the structure and regulation of the plant vacuolar V-ATPase. J Bioenerg Biomemb, 2003, 35: 377–388[7]Omri D, Felix F, Nelson N. Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep, 2004, 5: 1148–1152[8]Dettmer J, Liu T Y, Schumacher K. Functional analysis of Arabidopsis V-ATPase subunit VHA-E isoforms. Eur J Cell Biol, 2010, 89: 152–156[9]Dietz K J, Tavakoli N, Kluge C, Mimura T, Sharma S S, Harris G C, Chardonnens A N, Golldack D. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot, 2001, 52: 1969–1980[10]Wang B S, Lttge U, Ratajczak R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot, 2001, 52: 2355–2365[11]夏朝晖, 陈珈. 胁迫反应中的液泡膜H+-ATPase. 植物生理学通讯, 1998, 34: 168–174Xia Z H, Chen J. Type H+-ATPase in responses to stresses. 1998, 34: 168–174 (in Chinese)[12]He X, Huang X, Shen Y, Huang Z. Wheat V-H+-ATPase subunit genes significantly affect salt tolerance in Arabidopsis thaliana. PLoS One, 2014, 9: e86982[13]Zhang X H, Li B, Hu Y G, Chen L, Min D H. The wheat E subunit of V-type H+-ATPase is involved in the plant response to osmotic stress. Intl J Mol Sci, 2014, 15: 16196–16210[14]Barton L, Newsome S D, Chen F H, Wang H, Guilderson T P, Bettinger R L. Agricultural origins and the isotopic identity of domestication in northern China. Proc Natl Acad Sci USA, 2009, 106: 5523–5528[15]Bettinger R L, Barton L, Morgan C. The origins of food production in north China: a different kind of agricultural revolution. Evol Anthropol, 2010, 19: 9–21[16]Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence-driven grass model system. Plant Physiol, 2009, 149: 137–141[17]Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setariaviridis: a model for C4 photosynthesis. Plant Cell, 2010, 22: 2537–2544[18]Li P, Brutnell T P. Setariaviridis and Setariaitalica, model genetic systems for the Panicoid grasses. J Exp Bot, 2011, 62: 3031–3037[19]Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol, 2013, 33: 328–343[20]Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nat Prot, 2007, 2: 1565–1572[21]Xu Z S, Ni Z Y, Liu L, Nie L N, Li L C, Chen M, Ma Y Z. Characterization of the TaAI DFagene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genom, 2008, 280: 497–508[22]Ding L, Zhu J K. Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant Physiol, 1997, 113: 795–799[23]李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 119–263Li H S. Principle and Technology of Plant Physiology and Biochemistry Experiment. Beijing: Higher Education Press, 2000. pp 119–263 (in Chinese)[24]Zhao Q, Zhao Y J, Zhao B C, Ge R C, Li M, Shen Y Z, Huang Z J. Cloning and functional analysis of wheat V-H+-ATPase subunit genes. Plant Mol Biol, 2009, 69: 33–46[25]Ratajczak R. Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta, 2000, 1465: 17–36[26]Chinnusamy V, Zhu J H, Zhu J K. Salt stress signaling and mechanismas of plant salt tolerance. Genet Engin, 2006, 27: 141–177[27]Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol, 1980, 31: 149–190[28]Barkla B J, Zingarelli L, Blumwald E, Smith J A C. Tonoplast Na+/H+ antiport activity and itsenergization by the vacuolar H+-ATPase in the hallophytic plant Mesembryanthemum crystallinum L. Plant Physiol, 1995, 109: 549–556[29]Janicka-Russak M, K?obus G. Modification of plasmamembrane and vacuolar H+-ATPasesin response to NaCl and ABA. J Plant Physiol, 2007, 164: 295–302[30]Zhi R, To P. Function of transport H+-ATPases in plant cell plasma and vacuolar membranes of maize under salt stress conditions and effect of adaptogenic preparations. Ukrainski? Biokhimicheski? Zhurnal, 2011, 83: 63–68[31]Kasai M, Yamamoto Y, Maeshima M, Matsumoto H. In vivo treatment barley roots with vanadate increases vacuolar H+-translocating ATPase activity of the tonoplast-enriched membrane vesicles and the level of endogenous ABA. Plant Cell Physiol, 1994, 35: 291–295[32]Bray E A. Plant responses to water deficit. Ttends Plant Sci, 1997, 2: 48–54[33]Schroeder J I, Allen G J, Hugouvieux V, Kwak J M, Waner D. Guard cell signal tranduction. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 627–65.[34]Gaxiola R A, Li J S, Undurraga S, Dang L M, Allen G J, Alper S L, Fink G R. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA, 2001, 98: 11444–11449[35]Krebs M, Beyhl D, Gorlich E, Al-Rasheid A S, Marten I, Stierhof Y D, Hedrich R, Schumacher K. Arabidopsis, V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Natl Acad Sci USA, 2010, 107: 3251–3256 |
[1] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[2] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[3] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[4] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[5] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
[6] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[7] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[8] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[9] | 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究[J]. 作物学报, 2020, 46(9): 1351-1358. |
[10] | 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062. |
[11] | 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711. |
[12] | 宝力格,陆平,史梦莎,许月,刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定[J]. 作物学报, 2020, 46(5): 734-744. |
[13] | 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604. |
[14] | 刘谢香,常汝镇,关荣霞,邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选[J]. 作物学报, 2020, 46(01): 1-8. |
[15] | 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127. |
|