作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1748-1757.doi: 10.3724/SP.J.1006.2015.01748
张自常1,李永丰1,*,杨霞1,陆凡2,邱光2,李建伟2
ZHANG Zi-Chang1,LI Yong-Feng1,*,YANG Xia1,LU Fan2,QIU Guang2,LI Jian-Wei2
摘要:
以两优培九和南粳9108为试验材料,自水稻移栽至成熟分别与无芒稗(T1)、稗(T2)、西来稗(T3)和光头稗(T4)共生,以无稗草水稻处理(CK)为对照,研究干湿交替灌溉条件下不同稗草对水稻光合特性和产量的影响。结果表明,稗草对水稻产量的干扰因稗草种和水稻品种的不同而异。稗草种间干扰强度表现为T3>T1>T2>T4,两优培九减产率小于南粳9108。T1、T2、T3和T4处理后两优培九的减产幅度分别为11.16%~13.78%、10.19%~10.60%、19.00%~23.79%和0.50%~1.57%,除T4外其他处理较对照显著降低;南粳9108的减产幅度分别为38.44%~45.51%、31.29%~36.86%、54.88%~60.65%和8.28%~15.14%,均达显著差异。T1、T2和T3处理后对两优培九叶面积指数和叶绿体色素含量无显著影响,但使南粳9108的叶面积指数降低和叶绿体色素含量增加。4种处理还显著降低了水稻冠层的透光率、剑叶光合速率、蒸腾速率和气孔导度以及干物质积累量。冠层透光率、光合速率、气孔导度、蒸腾速率和成熟期干物质积累量降低以及灌浆期叶绿体色素含量不同程度增加可能是水稻产量降低的重要原因。
[1]Li L J, Chen T T, Wang Z Q, Zhang H, Yang J C, Zhang J H. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Res, 2013, 154: 226–235[2]Liu X J, Wang J C, Lu S H, Zhang F S, Zeng X Z, Ai Y W, Peng S, Christie P. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Res, 2003, 83: 297–311[3]Ramasamy S, Berge H F M T, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res, 1997, 51: 65–82[4]Bouman B A M, Peng S, Castaňeda A R, Visperas R M. Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manage, 2005, 74: 87–105[5]Ockerby S E, Fuka S. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Res, 2001, 69: 215–226[6]Toung T P, Bouman B A M, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod Sci, 2005, 8: 231–241[7]Yang C M, Yang L Z, Yang Y X, Zhu O Y. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric Water Manage, 2004, 70: 67–81[8]Bouman B A M, Fen L G, Tuong T P, Lu G, Wang H, Feng Y. Exploring options to grow rice under water-short conditions in northern China using a modelling approach. II. Quantifying yield, water balance components, and water productivity. Agric Water Manage, 2007, 88: 23–33[9]方长旬, 许铁城, 黄力坤, 王清水, 何海斌, 林文雄. 水稻品种“Lemont”响应低氮培养及共培稗草的上调表达基因分析. 中国生态农业学报, 2012, 20: 1185−1190Fang C X, Xu T C, Huang L K, Wang Q S, He H B, Lin W X. Analysis of up-regulating of “lemont”rice accdssion in response to low nitrogen supply and accompanying barngardgrass. Chin J Eco-Agric, 2012, 20: 1185−1190 (in Chinese with English abstract)[10]徐正浩, 谢国雄, 周宇杰, 高屾. 三种栽植方式下不同株型和化感特性水稻对无芒稗的干扰控制作用. 作物学报, 2013, 39: 537–548Xu Z H, Xie G X, Zhou Y J, Gao S. Interference of rice with different morphological types and allelopathy on barnyardgrass under three planting patterns. Acta Agron Sin, 2013, 39: 537–548 (in Chinese with English abstract)[11]Chauhan S B, Johnson D E. Relative importance of shoot and root competition in dry-seeded rice growing with junglerice (Echinochloa colona) and ludwigia (Ludwigia hyssopifolia). Weed Sci, 2010, 58: 295–299[12]张自常, 李永丰, 张彬, 杨霞. 稗属杂草对水稻生长发育和产量的影响. 应用生态学报, 2014, 25: 3177–3184Zhang Z C, Li Y F, Zhang B, Yang X. Influence of weeds in Echinochloa on growth and yield of rice. Chin J Appl Ecol, 2014, 25: 3177–3184 (in Chinese with English abstract)[13]李少昆, 赵明, 许启风, 王树安, 王玉萍, 王美云, 王崇桃, 曹连莆. 我国常用玉米自交系光合特性的研究. 中国农业科学, 1999, 32: 53–59Li S K, Zhao M, Xu Q F, Wang S A, Wang Y P, Wang M Y, Wang C T, Cao L P. A study on photosynthetic rates of inbred lines extensively used in China. Sci Agric Sin, 1999, 32 (2): 53–59 (in Chinese with English abstract)[14]程建平, 曹凑贵, 蔡明历, 汪金平, 原保忠, 王建漳, 郑传举. 不同灌溉方式对水稻生物学特性与水分利用效率的影响. 应用生态学报, 2006, 17: 1859–1865Cheng J P, Cao C G, Cai M L, Wang J P, Yuan B Z, Wang J Z, Zheng C J. Effects of different irrigation modes on biological characteristics and water use efficiency of paddy rice. Chin J Appl Ecol, 2006, 17: 1859–1865 (in Chinese with English abstract)[15]邵玺文, 刘红丹, 杜震宇, 杨晶, 孟繁霞, 马景勇. 不同时期水分处理对水稻生长及产量的影响. 水土保持学报, 2007, 21: 193–196Shao X W, Liu H D, Du Z Y, Yang J, Meng F X, Ma J Y. Effects of water disposal on growth and yield of rice. J Soil Water Conserv, 2007, 21: 193–196 (in Chinese with English abstract)[16]Zhang H, Zhang S F, Yang J C, Zhang J H, Wang Z Q. Alternate wetting and moderate soil drying during grain filling improves both quality and quantity of rice yield. Agron J, 2008, 100:726–733[17]Zhen G J, Ren G J, Lu X M, Jiang X L. Effects of water stress on rice grain yield and quality after heading stage. Chin J Rice Sci, 2003, 17: 239–243 (in Chinese with English abstract)[18]高俊凤, 孙群. 植物生理学实验指导. 西安: 陕西科学技术出版社, 1996. pp 74–77Gao J F, Sun Q. Experimental Guide for Plant Physiology. Xi’an: Shaanxi Science and Technology Press, 1996. pp 74–77 (in Chinese)[19]Dong N M, Brandt K K, Sørensen J, Hung N N, Hach C V, Tan P S, Dalsgaard T. Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biol Biochem, 2012, 47: 166–174[20]Xue Y G, Duan H, Liu L J, Wang Z Q, Yang J C, Zhang J H. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Sci, 2013, 53: 271–284[21]方荣杰. 非充分灌溉条件下稻田生态环境影响. 节水灌溉, 2001, (5): 35–37Fang R J. The effect of deficit irrigation conditions on ecological environment of paddy field. Watet Saving Irrig, 2001, (5): 35–37 (in Chinese)[22]朱文达. 稗对水稻生长和产量性状的影响及其经济阈值. 植物保护学报, 2005, 32: 81–86Zhu W D. Influence of barnyardgrass, Echinochloa crusgalli, on the growth and yield of paddy rice and its economic threshold. Acta Phytophy Sin, 2005, 32: 81–86 (in Chinese with English abstract)[23]Boccalandro H E, Rugnone M L, Moreno J E,Ploschuk E L, Serna L, Yanovsky M J, Casal J J. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol, 2009, 150(2): 1083–1092[24]Afifi M, Swanton C. Maize seed and stem roots differ in response to neighboring weeds. Weed Res, 2011, 51(5): 442–450[29]李伟, 曹坤芳. 干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响. 西北植物学报, 2006, 26: 266–275Li W, Cao K F. Effects of drought stress on photosynthetic characteristics and chlorophyII fluorescence parameters in seedings of Terminthia paniculata grown under different light level. Acta Bot Boreali-Occident Sin, 2006, 26: 266–275 (in Chinese with English abstract)[25]崔海岩, 勒立斌, 李波, 赵斌, 刘鹏, 张吉旺. 大田遮阴对夏玉米光合特性和叶黄素循环的影响. 作物学报, 2013, 39: 478–485Cui H Y, Jin L B, Li B, Zhao B, Dong S T, Liu P, Zhang J W. Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field. Acta Agron Sin, 2013, 39: 478–485 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[6] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[7] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[8] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[9] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[10] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[11] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[12] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[13] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[14] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[15] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
|