欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (01): 58-69.doi: 10.3724/SP.J.1006.2016.00058

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

茶树生长素外运载体基因CsPIN3的克隆与表达分析

王博1,2,曹红利1,2,黄玉婷1,2,胡玉荣1,2,钱文俊1,3,郝心愿1,王璐1,杨亚军1,*,王新超1,*   

  1. 1中国农业科学院茶叶研究所 / 国家茶树改良中心 / 农业部茶树生物学与资源利用重点实验室,浙江杭州 310008;2中国农业科学院研究生院,北京 100081;3 西北农林科技大学, 陕西杨凌 712100
  • 收稿日期:2015-06-08 修回日期:2015-09-06 出版日期:2016-01-12 网络出版日期:2015-10-08
  • 通讯作者: 杨亚军, E-mail: yjyang@mail.tricaas.com, Tel: 0571-86650266; 王新超, E-mail: xcw75@mail.tricaas.com, Tel: 0571-86653162
  • 基金资助:

    本研究由国家自然科学基金项目(31370690),国家现代农业产业技术体系建设专项(CARS-23)和中国农业科学院科技创新工程(CAAS-ASTIP-2014- TRICAAS)资助。

Cloning and Expression Analysis of Auxin Efflux Carrier Gene CsPIN3 in Tea Plant (Camellia sinensis)

WANG Bo1,2,CAO Hong-Li1,2,HUANG Yu-Ting1,2,HU Yu-Rong1,2,QIAN Wen-Jun1,3,HAO Xin-Yuan1, WANG Lu1,YANG Ya-Jun1,*,WANG Xin-Chao1,*   

  1. 1 Tea Research Institute of Chinese Academy of Agricultural Sciences / National Center for Tea Improvement / Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China; 2 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Northwest A&F University, Yangling 712100, China
  • Received:2015-06-08 Revised:2015-09-06 Published:2016-01-12 Published online:2015-10-08
  • Contact: 杨亚军, E-mail: yjyang@mail.tricaas.com, Tel: 0571-86650266; 王新超, E-mail: xcw75@mail.tricaas.com, Tel: 0571-86653162
  • Supported by:

    This research was supported by the National Natural Science Foundation of China (31370690), the Modern Agro-industry Technology Research System (CARS-23) and the Scientific Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2014-TRICAAS),

摘要:

从实验室前期茶树冷驯化转录组测序结果中筛选拼接得到1条与其他植物PIN蛋白高度相似的EST序列,采用反转录PCR结合RACE技术从茶树中克隆到生长素外运载体基因PIN3的全长cDNA序列,命名为CsPIN3 (GenBank登录号为KP896474)CsPIN3全长2654 bp,包含1926 bp的完整开放阅读框(ORF),编码641个氨基酸;生物信息学分析显示,CsPIN3编码的蛋白质分子量为70.15 kD,理论等电点为8.42,是一种非分泌性蛋白;亚细胞定位显示,CsPIN3主要分布于质膜上,在内质网中有少量分布,是典型的膜蛋白;氨基酸序列分析表明CsPIN3编码蛋白由两端的疏水区和中间的亲水区构成。疏水区内有多个跨膜螺旋,其N端疏水区有5个跨膜螺旋,C端有4个,与水稻的PIN蛋白结构相似。亲水区存在2个可变结构域,还存在着糖基化位点和磷酸化位点以及调控PIN蛋白内吞作用的NPNXY保守内在构型(Inner Motif, IM),如PIN蛋白特有的丝氨酸/苏氨酸蛋白激酶(PID/PINOID)磷酸化活性位点——TPRXS(N/S)结构域相似性及系统进化分析表明,该基因编码的氨基酸序列具有较高的保守性,与杨树、葡萄、柑橘、烟草、番茄、马铃薯、和芝麻等植物的PIN序列相似性在80%以上,与茄科植物的亲缘关系最近。在拟南芥PINs蛋白中,AtPIN3与茶树CsPIN3的亲缘关系较近。组织表达特异性分析表明 CsPIN3在茶树根、茎、叶、花中均有表达,在花中的表达量较高,在茎、叶中的表达量略高于根部。实时定量PCR分析显示CsPIN3龙井43茶树越冬芽萌发阶段的表达量高于休眠阶段(休眠初期到膨大期之间),在茶芽萌动过程中表达上调的速度明显。推测该基因可能与茶树越冬芽休眠的维持和解除相关。

关键词: 茶树, 休眠, 生长素外运载体基因, 表达分析

Abstract:

On the basis of previous transcriptome study on tea plant cold acclimatization, we obtained a PIN homology gene named CsPIN3 and cloned its full-length cDNA sequence by reverse transcription-PCR (RT-PCR) combining with rapid amplification of cDNA ends (RACE). The full length cDNA of CsPIN3 was 2654 bp (GenBank accession No. KP896474) and contained a 1 926 bp open reading frame (ORF) encoding 641 amino acid residues. Bioinformatic analyses showed that CsPIN3 was not a secretory protein and had a molecular weight of 70.15 kD, atheoretical isoelectric point of 8.42. Subcellular localization prediction showed that CsPIN3 was a typical membrane protein mainly located in plasmalemma and then in endoplasmic reticulum. Moreover, Amino acid sequence analysis indicated that CsPIN3 protein contained hydrophobic regions in both ends and hydrophilic regions in the middle. Similar to PIN protein in rice, the hydrophobic regions of CsPIN3 consisted of several transmembrane helixes, among which five was in N motif and four in C motif. The hydrophilic regions of CsPIN3 had two unstable domains, several o-glycosylation sites, several phosphorylation sites like TPRXS (N/S) motif (a PID/PINOID phosphorylation site) and a well characterized conserved inner motif NPNXY regulating the endocytosis of PIN. Comparison of sequences similarity showed that the amino acid sequence coded by CsPIN3 had more than 80% similarity with reported PINs of Populus trichocarpa, Vitis vinifera, Citrus sinensis, Nicotiana tomentosiformis, Solanum lycopersicum, Solanum tuberosum, and Sesamum indicum. Phylogenetic tree analysis showed that CsPIN3 had the closest genetic relationship with Solanaceae and the highest identity with AtPIN3 of Arabidopsis thaliana PIN proteins. The CsPIN3 gene differentially expressed in different tea plant tissues, and transcript abundance in flower was much higher than that in leaf, stem and root. In addition, we analyzed the expression of CsPIN3 by qRT-PCR during the different phases of bud dormancy formation and break, and the results indicated that in cultivar Longjing 43, the expression level of CsPIN3 at growth stage was higher than that at dormant stage (initial dormant stage to expanding stage) and an obvious expression jump was detected at bud sprouting stage. These demonstrated that CsPIN3 could be associated with the regulation of tea plant bud dormancy formation and break.

Key words: Tea plant (Camellia sinensis), Dormancy, Auxin efflux carrier, Expression analysis

[1] Rohde A, Bhalerao R P. Plant dormancy in the perennial context. Trends Plant Sci, 2007, 12: 217–223

[2] Horvath D P, Anderson J V, Chao W S, Foley M E. Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci, 2003, 8: 534–540

[3] 邹纯雪, 门姝珍. 生长素的外输载体PIN蛋白家族研究进展. 中国细胞生物学报, 2013, 35: 574–582

Zou C X, Men S Z. Research advances in auxin efflux carrier PIN proteins. Chin J Cell Biol, 2013, 35: 574–582 (in Chinese with English abstract)

[4] Ganguly A, Park M, Kesawat M S, Cho H T. Functional analysis of the hydrophilic loop in intracellular trafficking of Arabidopsis PIN-FORMED proteins. Plant Cell, 2014, 26: 1570–1585

[5] Zazimalova E, Krecek P, Skupa P, Hoyerova K, Petrasek J. Polar transport of the plant hormone auxin the role of PIN-FORMED (PIN) proteins. Cell Mol Life Sci, 2007, 64: 1621–1637

[6] Furutani M, Nakano Y, Tasaka M. MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation. Proc Acad Natl Sci USA, 2014, 111: 1198–1203

[7] Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell, 2009, 136: 1005–1016

[8] Mravec J, Skupa P, Bailly A, Hoyerova K, Krecek P, Bielach A, Petrasek J, Zhang J, Gaykova V, Stierhof Y D, Dobrev P I, Schwarzerova K, Rolcik J, Seifertova D, Luschnig C, Benkova E, Zazimalova E, Geisler M, Friml. Subcellular homeostasis of phytohormone auxin is mediated by the ER localized PIN5 transporter. Nature, 2009, 459: 1136–1140

[9] Friml J. Auxin transport- shaping the plant. Curr Opin Plant Bio1, 2003, 6: 7–12

[10] Keuskamp D H, Pollmann S, Voeseneket L A C J, Peeters A J M, Pierik Re. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc Natl Acad Sci, 2010, 107: 22740–22744

[11] He D, Mathiason K, Fennell A. Auxin and cytokinin related gene expression during active shoot growth and latent bud paradormancy in Vitis riparia grapevine. J Plant Physiol, 2012, 169: 643–648

[12] Leduc N, Roman H, Barbier F. Light signaling in bud outgrowth and branching in plant. Plant, 2014, 3: 223–250

[13] Efstathios R, Bjorn K, Marian O, Visser R G F, Bachem C W B. The PIN family of proteins in potato and their putative role in tuberization. Plant Sci, 2013, 4: 524

[14] Li Y H, Zou M H, Feng B H, Huang X, Zhang Z, Sun G M. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments. Plant Physiol Biochem, 2012, 55: 33–42

[15] 刘凤栾, 寇亚平, 陈晓丽, 高彬, 王玲, 赵梁军. 狗蔷薇生长素输出载体蛋白基因PIN1和PIN2的分离与表达分析. 园艺学报, 2014, 41: 925–934

Liu F L, Chen X L, Gao B, Wang L, et al. Cloning and Expression analysis of PIN1 and PIN2 encoding auxin efflux carrier in Rosa canina. Acta Hort Sin, 2014, 41: 925–934 (in Chinese with English abstract)

[16] Miyashita Y, Takasugi T, Ito Y. Identification and expression analysis of PIN genes in rice. Plant Sci, 2010, 178: 424–428

[17] Chang S J, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 1993, 11: 113–116

[18] Wang X C, Zhao Q Y, Ma C L, Cao H L, Kong Y M, Yue C, Hao X Y, Chen L, Ma J Q, Jin J Q, Li X, Yang Y J. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genom, 2013, 14: 415–430

[19] 曹红利, 岳川, 郝心愿, 王新超, 杨亚军. 茶树胆碱单加氧酶CsCMO的克隆及甜菜碱合成关键基因的表达分析. 中国农业科学, 2013, 46: 3087–3096

Cao H L, Yue C, Hao X Y, Wang X C, Yang Y J. Cloning of Choline Monooxygenase (CMO) gene and expression analysis of the key glycine betaine biosynthesis-related genes in tea plant (Camelia sinensis). Sci Agric Sin, 2013, 46: 3087–3096 (in Chinese with English abstract)

[20] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739

[21] Bendtsen J D, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 2004, 340: 783–795

[22] Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel R D. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucl Acid Res, 2003, 31: 3784–3788

[23] Geourjon C, Deleage G. SOPAM: Significant improvements in protein secondary structure prediction by consensus prediction from multiple aligements. Comp Appl Biosci, 1995, 11: 681–684

[24] 贡年娣, 郭丽丽, 王弘雪, 赵磊, 王婕, 王文钊, 刘亚军, 王云生, 高丽萍, 夏涛. 茶树两个MYB转录因子基因的克隆及功能验证. 茶叶科学, 2014, 34: 36–44

Gong N D, Guo L L, Wang H X, Zhao L, Wang J, Wang W Z, Liu Y J, Wang Y S, Gao L P, Xia T. Cloning and functional verification of two myb transcription factors in tea plant [Camellia sinensis (L.)]. J Tea Sci, 2014, 34: 36–44 (in Chinese with English abstract)

[25] 郝心愿, 曹红利, 杨亚军, 王新超, 马春雷, 肖斌. 茶树生长素响应因子基因CsARF1的克隆与表达分析. 作物学报, 2013,39: 389–397

Hao X Y, Cao H L, Yang Y J, Wang X C, Ma C L, Xiao B. Cloning and expression analysis of auxin response factor gene (CsARF1) in tea plant (Camellia sinensis [L.]O. Kuntze). Acta Agron Sin, 2013, 39: 389–397 (in Chinese with English abstract)

[26] Spyropoulos I C, Liakopoulos T D, Bagos P G, Hamodrakas S J. TMRPres2D: high quality visual representation of transmembrane protein models. Bioinformatics, 2004, 20: 3258–3260

[27] Hao X Y, Horvath D P, Chao W S, Yang Y J,Wang X C, Xiao B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Intl J Mol Sci, 2014, 15: 22155–22172

[28] 赵丽萍, 陈亮, 王新超, 姚明哲. 茶树新梢不同叶片中β-葡萄糖苷酶和β-樱草糖苷酶基因表达的实时定量PCR分析. 茶叶科学, 2004, 24: 177–182

Zhao L P, Chen L, Wang X C, Yao M Z. Quantitative detection of β-glucosidase and β-primeverosidase gene expressions in diferent leaves of tea plant (Camellia sinensis) by Real-time PCR analysis. J Tea Sci, 2006, 24: 177–182 (in Chinese with English abstract)

[29] Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazimalova E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol, 2009, 10: 249–260

[30] Blakeslee J J, Bandyopadhyay A, Lee O R, Mravec J, Sauer M, Makam S N, Cheng Y, Bouchard R, Adamec J, Geiser M, Nagashima A, Sakai T, Martinola E, Friml J, Peer W A, Murphy A S. Interactions among PIN-FORMED and P-glyco-protein auxin transporters in Arabidopsis. Plant Cell, 2007, 19: 131–147

[31] Kramer EM. PIN and AUX/LAX proteins: their role in auxin accumulation. Trends in plant science, 2004, 9: 578-582.

[32] Shen C J, Bai Y H, Wang S K, Zhang S N, Wu Y R, Chen M, Jiang D A, Qi Y H. Expression profile of PIN, AUX/LAX and PGP auxin transport gene families in Sorghum biocolor under phytohormone and abiotic stress. FEBS J, 2010, 277: 2954–2969

[33] 丁懿, 石彩娟, 王万军. 水稻PIN家族的生物信息学分析. 安徽农业科学, 2012, 40: 13238–13242

Ding Y, Shi C J, Wang W J. Bioinformatics analysis of PIN-formed family in Oryza sativa. J Anhui Agric Sci, 2012, 40: 13238–13242 (in Chinese with English abstract)

[34] Friml J. Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Cell Biol, 2010, 89: 231–235

[35] Petrasek J, Friml J. Auxin transport routes in plant development. Development, 2009, 136: 2675–2688

[36] Dhonukshe P, Huang F, Galvan-Ampudia C S, Mahonen A P, Kleine-Vehn J, Xu J, Quint A, Prasad K, Friml J, Scheres B, Offringa R. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS (N/S) motifs to direct apical PIN recycling. Development, 2010, 137: 3255–3255

[37] Michniewicz M, Zago M K, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler M G, Ohno C, Zhang J, Huang F, Schwad R, Weigei D, Meyerowitz E M, Luschnig C, Offringa R, Friml J. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell, 2007, 130: 1044–1056

[38] Yang T B, Poovaiah B W. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem, 2000, 275: 3137–3143

[39] Adamowski M, Friml J. PIN-dependent auxin transport: action, rugulation, and evolution. Plant Cell, 2015, 27: 20–32

[40] Wouter G, Doorn V, Dole I, Fisun G, Celike l, Harkema H. Opening of Iris flowers is regulated by endogenous auxins. J Biol Chem, 2013, 170: 161–164

[41] Harada T, Torli Y, Morita S, Masumura T, Satoh S. Differential expression of genes identified by suppression subtractive hybridization in petals of opening carnation flowers. J Exp Bot, 2010, 61: 2345–2354

[42] Okada K, Ueda J, Komaki M K, Bell C J, Shimura Y. Requirement of the auxin polar transport system in early stages of arabidopsis floral bud formation. Plant Cell, 1991, 3: 677–684

[43] Zhang Y X, Yu D, Tian X L, Liu C Y, Gai S P, Zheng G S. Different expression proteins associated with bud dormancy release during chilling treatment of tree penoy ( Paeonia suffruticosa). Plant Biol, 2015, 17: 114–122

[44] Mathiason K, He D, Grimplet J, Venkateseari J, Galbraith D W, Or E, Fennell A. Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genom, 2009, 9: 81–96

[45] Nagar P K, Sood S. Changes in endogenous auxin during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiol Plant, 2006, 28: 165–169

[46] Saure M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benkova E. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev, 2006, 20: 2902–2911

[47] Balla J, Kalousek P, Reinohl V, Friml J, Prochazka S. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J, 2011, 65: 571–577

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[5] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[6] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[7] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[8] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[9] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[10] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[11] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[12] 李竟才, 王强林, 宋威武, 黄维, 肖桂林, 吴承金, 顾钦, 宋波涛. 基于侯选基因标记的四倍体马铃薯休眠QTL关联分析[J]. 作物学报, 2020, 46(9): 1380-1387.
[13] 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032.
[14] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[15] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!