[1] Rohde A, Bhalerao R P. Plant dormancy in the perennial context. Trends Plant Sci, 2007, 12: 217–223
[2] Horvath D P, Anderson J V, Chao W S, Foley M E. Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci, 2003, 8: 534–540
[3] 邹纯雪, 门姝珍. 生长素的外输载体PIN蛋白家族研究进展. 中国细胞生物学报, 2013, 35: 574–582
Zou C X, Men S Z. Research advances in auxin efflux carrier PIN proteins. Chin J Cell Biol, 2013, 35: 574–582 (in Chinese with English abstract)
[4] Ganguly A, Park M, Kesawat M S, Cho H T. Functional analysis of the hydrophilic loop in intracellular trafficking of Arabidopsis PIN-FORMED proteins. Plant Cell, 2014, 26: 1570–1585
[5] Zazimalova E, Krecek P, Skupa P, Hoyerova K, Petrasek J. Polar transport of the plant hormone auxin the role of PIN-FORMED (PIN) proteins. Cell Mol Life Sci, 2007, 64: 1621–1637
[6] Furutani M, Nakano Y, Tasaka M. MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation. Proc Acad Natl Sci USA, 2014, 111: 1198–1203
[7] Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell, 2009, 136: 1005–1016
[8] Mravec J, Skupa P, Bailly A, Hoyerova K, Krecek P, Bielach A, Petrasek J, Zhang J, Gaykova V, Stierhof Y D, Dobrev P I, Schwarzerova K, Rolcik J, Seifertova D, Luschnig C, Benkova E, Zazimalova E, Geisler M, Friml. Subcellular homeostasis of phytohormone auxin is mediated by the ER localized PIN5 transporter. Nature, 2009, 459: 1136–1140
[9] Friml J. Auxin transport- shaping the plant. Curr Opin Plant Bio1, 2003, 6: 7–12
[10] Keuskamp D H, Pollmann S, Voeseneket L A C J, Peeters A J M, Pierik Re. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc Natl Acad Sci, 2010, 107: 22740–22744
[11] He D, Mathiason K, Fennell A. Auxin and cytokinin related gene expression during active shoot growth and latent bud paradormancy in Vitis riparia grapevine. J Plant Physiol, 2012, 169: 643–648
[12] Leduc N, Roman H, Barbier F. Light signaling in bud outgrowth and branching in plant. Plant, 2014, 3: 223–250
[13] Efstathios R, Bjorn K, Marian O, Visser R G F, Bachem C W B. The PIN family of proteins in potato and their putative role in tuberization. Plant Sci, 2013, 4: 524
[14] Li Y H, Zou M H, Feng B H, Huang X, Zhang Z, Sun G M. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments. Plant Physiol Biochem, 2012, 55: 33–42
[15] 刘凤栾, 寇亚平, 陈晓丽, 高彬, 王玲, 赵梁军. 狗蔷薇生长素输出载体蛋白基因PIN1和PIN2的分离与表达分析. 园艺学报, 2014, 41: 925–934
Liu F L, Chen X L, Gao B, Wang L, et al. Cloning and Expression analysis of PIN1 and PIN2 encoding auxin efflux carrier in Rosa canina. Acta Hort Sin, 2014, 41: 925–934 (in Chinese with English abstract)
[16] Miyashita Y, Takasugi T, Ito Y. Identification and expression analysis of PIN genes in rice. Plant Sci, 2010, 178: 424–428
[17] Chang S J, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 1993, 11: 113–116
[18] Wang X C, Zhao Q Y, Ma C L, Cao H L, Kong Y M, Yue C, Hao X Y, Chen L, Ma J Q, Jin J Q, Li X, Yang Y J. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genom, 2013, 14: 415–430
[19] 曹红利, 岳川, 郝心愿, 王新超, 杨亚军. 茶树胆碱单加氧酶CsCMO的克隆及甜菜碱合成关键基因的表达分析. 中国农业科学, 2013, 46: 3087–3096
Cao H L, Yue C, Hao X Y, Wang X C, Yang Y J. Cloning of Choline Monooxygenase (CMO) gene and expression analysis of the key glycine betaine biosynthesis-related genes in tea plant (Camelia sinensis). Sci Agric Sin, 2013, 46: 3087–3096 (in Chinese with English abstract)
[20] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739
[21] Bendtsen J D, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 2004, 340: 783–795
[22] Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel R D. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucl Acid Res, 2003, 31: 3784–3788
[23] Geourjon C, Deleage G. SOPAM: Significant improvements in protein secondary structure prediction by consensus prediction from multiple aligements. Comp Appl Biosci, 1995, 11: 681–684
[24] 贡年娣, 郭丽丽, 王弘雪, 赵磊, 王婕, 王文钊, 刘亚军, 王云生, 高丽萍, 夏涛. 茶树两个MYB转录因子基因的克隆及功能验证. 茶叶科学, 2014, 34: 36–44
Gong N D, Guo L L, Wang H X, Zhao L, Wang J, Wang W Z, Liu Y J, Wang Y S, Gao L P, Xia T. Cloning and functional verification of two myb transcription factors in tea plant [Camellia sinensis (L.)]. J Tea Sci, 2014, 34: 36–44 (in Chinese with English abstract)
[25] 郝心愿, 曹红利, 杨亚军, 王新超, 马春雷, 肖斌. 茶树生长素响应因子基因CsARF1的克隆与表达分析. 作物学报, 2013,39: 389–397
Hao X Y, Cao H L, Yang Y J, Wang X C, Ma C L, Xiao B. Cloning and expression analysis of auxin response factor gene (CsARF1) in tea plant (Camellia sinensis [L.]O. Kuntze). Acta Agron Sin, 2013, 39: 389–397 (in Chinese with English abstract)
[26] Spyropoulos I C, Liakopoulos T D, Bagos P G, Hamodrakas S J. TMRPres2D: high quality visual representation of transmembrane protein models. Bioinformatics, 2004, 20: 3258–3260
[27] Hao X Y, Horvath D P, Chao W S, Yang Y J,Wang X C, Xiao B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Intl J Mol Sci, 2014, 15: 22155–22172
[28] 赵丽萍, 陈亮, 王新超, 姚明哲. 茶树新梢不同叶片中β-葡萄糖苷酶和β-樱草糖苷酶基因表达的实时定量PCR分析. 茶叶科学, 2004, 24: 177–182
Zhao L P, Chen L, Wang X C, Yao M Z. Quantitative detection of β-glucosidase and β-primeverosidase gene expressions in diferent leaves of tea plant (Camellia sinensis) by Real-time PCR analysis. J Tea Sci, 2006, 24: 177–182 (in Chinese with English abstract)
[29] Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazimalova E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol, 2009, 10: 249–260
[30] Blakeslee J J, Bandyopadhyay A, Lee O R, Mravec J, Sauer M, Makam S N, Cheng Y, Bouchard R, Adamec J, Geiser M, Nagashima A, Sakai T, Martinola E, Friml J, Peer W A, Murphy A S. Interactions among PIN-FORMED and P-glyco-protein auxin transporters in Arabidopsis. Plant Cell, 2007, 19: 131–147
[31] Kramer EM. PIN and AUX/LAX proteins: their role in auxin accumulation. Trends in plant science, 2004, 9: 578-582.
[32] Shen C J, Bai Y H, Wang S K, Zhang S N, Wu Y R, Chen M, Jiang D A, Qi Y H. Expression profile of PIN, AUX/LAX and PGP auxin transport gene families in Sorghum biocolor under phytohormone and abiotic stress. FEBS J, 2010, 277: 2954–2969
[33] 丁懿, 石彩娟, 王万军. 水稻PIN家族的生物信息学分析. 安徽农业科学, 2012, 40: 13238–13242
Ding Y, Shi C J, Wang W J. Bioinformatics analysis of PIN-formed family in Oryza sativa. J Anhui Agric Sci, 2012, 40: 13238–13242 (in Chinese with English abstract)
[34] Friml J. Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Cell Biol, 2010, 89: 231–235
[35] Petrasek J, Friml J. Auxin transport routes in plant development. Development, 2009, 136: 2675–2688
[36] Dhonukshe P, Huang F, Galvan-Ampudia C S, Mahonen A P, Kleine-Vehn J, Xu J, Quint A, Prasad K, Friml J, Scheres B, Offringa R. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS (N/S) motifs to direct apical PIN recycling. Development, 2010, 137: 3255–3255
[37] Michniewicz M, Zago M K, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler M G, Ohno C, Zhang J, Huang F, Schwad R, Weigei D, Meyerowitz E M, Luschnig C, Offringa R, Friml J. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell, 2007, 130: 1044–1056
[38] Yang T B, Poovaiah B W. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem, 2000, 275: 3137–3143
[39] Adamowski M, Friml J. PIN-dependent auxin transport: action, rugulation, and evolution. Plant Cell, 2015, 27: 20–32
[40] Wouter G, Doorn V, Dole I, Fisun G, Celike l, Harkema H. Opening of Iris flowers is regulated by endogenous auxins. J Biol Chem, 2013, 170: 161–164
[41] Harada T, Torli Y, Morita S, Masumura T, Satoh S. Differential expression of genes identified by suppression subtractive hybridization in petals of opening carnation flowers. J Exp Bot, 2010, 61: 2345–2354
[42] Okada K, Ueda J, Komaki M K, Bell C J, Shimura Y. Requirement of the auxin polar transport system in early stages of arabidopsis floral bud formation. Plant Cell, 1991, 3: 677–684
[43] Zhang Y X, Yu D, Tian X L, Liu C Y, Gai S P, Zheng G S. Different expression proteins associated with bud dormancy release during chilling treatment of tree penoy ( Paeonia suffruticosa). Plant Biol, 2015, 17: 114–122
[44] Mathiason K, He D, Grimplet J, Venkateseari J, Galbraith D W, Or E, Fennell A. Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genom, 2009, 9: 81–96
[45] Nagar P K, Sood S. Changes in endogenous auxin during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiol Plant, 2006, 28: 165–169
[46] Saure M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benkova E. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev, 2006, 20: 2902–2911
[47] Balla J, Kalousek P, Reinohl V, Friml J, Prochazka S. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J, 2011, 65: 571–577 |