作物学报 ›› 2016, Vol. 42 ›› Issue (02): 159-169.doi: 10.3724/SP.J.1006.2016.00159
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
郭建斌1,2,黄莉1,成良强1,陈伟刚1,任小平1,陈玉宁1,周小静1,沈金雄2,姜慧芳1,*
GUO Jian-Bin1,2,HUANG Li1,CHENG Liang-Qiang1,CHEN Wei-Gang1,REN Xiao-Ping1,CHEN Yu-Ning1,ZHOU Xiao-Jing1,SHEN Jin-Xiong2,JIANGHui-Fang1,*
摘要:
遗传图谱的构建及整合是开展花生分子育种研究的基础,利用多个作图群体整合遗传图谱是解决图谱标记密度低的有效途径。本研究采用基于锚定
[1]洪彦彬, 梁炫强,陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建.作物学报,2009,35:395–402Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, and W S J. Construction of genetic linkage map in peanut (Arachishypogaea L.) cultivars.ActaAgron Sin, 2009,35:395–402(in Chinese with English abstract)[2]姜慧芳,陈本银,任小平,廖伯寿,雷永,傅廷栋,马朝芝, Mace E, Crouch J H.利用重组近交系群体检测花生青枯病抗性SSR标记.中国油料作物学报,2007,29:26–30Jiang H F, Chen B Y, Ren X P, Liao B S, Lei Y, Fu T D, Ma C Z, mace E, Crouch J H. Identification of SSR markers linked to bacterial wilt resistance of peanut with RILs. Chin J Oil Crop Sci, 2007,29:26–30(in Chinese with English abstract)[3]彭文舫,姜慧芳,任小平,吕建伟,赵新燕,黄莉. 花生AFLP遗传图谱构建及青枯病抗性QTL分析.华北农学报, 2010, 25: 81–86Peng W F, Jiang H F, Ren X P, Lü J W, Zhao X Y, Huang L. Construction of AFLP genetic linkage map and detection of QTLs for bacterial Wilt résistance in peanut (ArachishypogaeaL.). Acta Agric Boreali Sin, 2010, 25(6): 81–86(in Chinese with English abstract)[4]Qin H,Fene S P, Chen C,Guo Y F, Knapp S, Culbreath A, He G H, Wang M L, Zhang X Y, Horlbrook C C, Ozias-Akins P, Guo B Z. An integrated genetic linkage map of cultivated peanut (ArachishypogaeaL.) constructed from two RIL populations. Theor Appl Genet, 2012, 124: 653–664[5]Gautami B, Ravi K,Narasu M L, Hoisington D A, Varshney R K.. Novel set of groundnut SSR markers for germplasm analysis and inter-specific transferability. Int J Integr Biol, 2009, 7: 100–106[6]张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究. 浙江大学博士学位论文,浙江杭州, 2010Zhang X Y. Inheritance of Main Traits Related to Yield, Quality and Disease Resistance and Their QTLs Mapping in Peanut (Arachishypogaea L.). PhD Dissertation of Zhejiang University, Hangzhou, China, 2010 (in Chinese with English abstract)[7]Bravo JP, Hoshino AA, Angelici CMLCDLCR, Gimenes MA.Transferability and use of microsatellite markers for the genetic analysis of the germplasm of some Arachis section species of the genus Arachis. Genet Mol Biol, 2006,29:516–524[8]Cuc L, Mace E, Crouch J, Quang V, Long T, Varshney R. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (ArachishypogaeaL.). BMC Plant Biol, 2008,8:55[9]Gimenes M, Hoshino A, BarbosaA, Palmieri D, Lopes C. Characterization and transferability of microsatellite markers of the cultivated peanut (ArachishypogaeaL.). BMC Plant Biol, 2007,7:9[10]He G, Meng R, Newman M, Gao G, Pittman R, Prakash CS.Microsatellites as DNA markers in cultivated peanut (Arachishypogaea L.). BMC Plant Biol, 2003,3:3[11]Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B. Utility of EST-derived SSR in cultivated peanut (Arachishypogaea L.)andArachis wild species. BMC Plant Biol, 2009,9:35[12]Varshney R, Bertioli D, Moretzsohn M, Vadez V, Krishnamurthy L,Aruna R, Nigam S, Moss B, Seetha K, Ravi K, The first SSR-based genetic linkage map for cultivated groundnut (ArachishypogaeaL.). Theor Appl Genet, 2009, 118: 729–739[13]Wang H,Penmetsa R V, Yuan M, Gong L, Zhao Y, Guo B, Farmer A D, Rosen B D, Gao J, Isobe S, Bertioli D J, Varshney R K, Cook D R, He G. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (ArachishypogaeaL.). BMC Plant Biol, 2012, 12: 10[14]ShirasawaK,Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M,Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12: 80[15]Shirasawa K, Bertioli D J, Varshney R K, Moretzsohn M C, Leal-Bertiol S C M, Thudi M, Pandey M K, Rami J F, Fonce'ka D, Gowda M V C, Qin H D. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res, 2013, 20: 173–184[16]Sujay V, Gowda M, Pandey M, Bhat R, Khedikar Y, Nadaf H, Gautami B, SarvamangalaC, Lingaraju S, Radhakrishan T. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachishypogaea L.).Mol Breed, 2012, 30:773–788[17]Song Q J,Marek L F, ShoemakerR C, Lark K G, ConcibidoVC,Delannay X, Specht J E, CreganP B. A new integrated genetic linkage map of the soybean.Theor Appl Genet, 2004, 109: 122–128[18]Hong YB, Liang XQ, Chen XP, LinKY, Zhou GY, Li SX, Liu HY. Genetic differences in peanut cultivated types (Arachishypogaea L.) revealed by SSR polymorphism. Mol Plant Breed, 2008, 6: 71–78[19]张新友,韩锁义,徐静,严玫,刘华,汤丰收,董文召,黄冰艳.花生主要品质性状的QTLs定位分析. 中国油料作物学报, 2012, 34: 311–315Zhang X Y, Han S Y, Xu J, Yan M. Liu H, Tang F S, Dong W Z, Huang B Y. Identification of QTLs for important quality traits in cultivated peanut (Arachishypogaea L.).Chin J Oil Crop Sci, 2012, 34: 311–315(in Chinese with English abstract)[20]王强,张新友,汤丰收,董文召,徐静.基于SRAP分子标记的栽培种花生遗传连锁图谱构建. 中国油料作物学报, 2010, 32:374–378Wang Q, Zhang X Y, Tang F S. Dong W Z,Xu J. Construction of genetic linkage map of peanut(Arachishypogaea L.)based on SRAP markers. Chin J Oil CropSci, 2010, 32:374–378(in Chinese with English abstract)[21]巩鹏涛,木金贵,赵金荣,王晓玲,白羊年,方宣钧.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合.分子植物育种,2006, 4:309–316Gong P T, Mu J G, Zhao J R, Wang X L, Bai Y N, Fang X J. An integrated soybean genetic linkage map comprising 315 SSRs and 40 AFLPs.Mol Plant Breed, 2006, 4: 309–316(in Chinese with English abstract)[22]韩柱强,高国庆,韦鹏霄,唐荣华,钟瑞春. 利用SSR标记分析栽培种花生多态性及其亲缘关系.花生学报,2003,32:295–300Han Z Q, Gao G Q, Wei P X, Tang R H, Zhong R C.Analysis of DNA polymorphism and genetic relationships in cultivated peanut(Arachishypogaea L.) using microsatellite markers.J Peanut Sci, 2003,32:295–300(in Chinese with English abstract) |
[1] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[4] | 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919. |
[5] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[6] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[7] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[8] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[9] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[10] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[11] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[12] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[13] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[14] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
[15] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
|