欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (05): 684-689.doi: 10.3724/SP.J.1006.2016.00684

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个水稻黄绿叶突变基因的定位和遗传研究

初志战1,郭海滨2,刘小林3,陈远玲1,刘耀光1,*   

  1. 1 华南农业大学生命科学学院 / 亚热带农业生物资源保护与利用重点实验室, 广东广州 510642; 2 华南农业大学公共基础课实验教学中心, 广东广州 510642; 3 宜春学院, 江西宜春 336000
  • 收稿日期:2015-09-25 修回日期:2016-01-11 出版日期:2016-05-12 网络出版日期:2016-02-18
  • 通讯作者: 刘耀光, E-mail: ygliu@scau.edu.cn
  • 作者简介:刘耀光, E-mail: ygliu@scau.edu.cn
  • 基金资助:

    本研究由亚热带农业生物资源保护与利用国家重点实验室开放课题(SKL-CUSAb-2013-04),江西省教育厅科技计划项目(GJJ14707)和广东省自然科学基金-博士启动项目(2015A030310485)资助。

Genetic Analysis and Gene Mapping of a Yellow-green Leaf Mutant in Rice

CHU Zhi-Zhan1,GUO Hai-Bin2,LIU Xiao-Lin3,CHEN Yuan-Ling1,LIU Yao-Guang1,*   

  1. 1 College of Life Sciences, South China Agricultural University / State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; 2 Center of Experimental Teaching for Common Basic Course, South China Agricultural University, Guangzhou 510642, China; 3 Yichun University, Yichun 336000, China
  • Received:2015-09-25 Revised:2016-01-11 Published:2016-05-12 Published online:2016-02-18
  • Contact: Liu Yaoguang, E-mail: ygliu@scau.edu.cn
  • About author:Liu Yaoguang, E-mail: ygliu@scau.edu.cn
  • Supported by:

    This study was supported by the Open Fund Project of State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (SKL-CUSAb-2013-04), the Science and Technology Program from Education Department of Jiangxi Province (GJJ14707), and the Natural Science Fund of Guangdong Province-the Launch Program for Doctor (2015A030310485).

摘要:

从粳稻品种日本晴经60Co诱变的M1材料中发现一个黄绿叶突变体, 其叶片从萌发到三叶前期表现白化, 三叶后期开始转为黄绿叶, 直到衰老。遗传分析表明, 该突变表型受一对隐性核基因控制, 将该黄绿叶突变体暂定名为ygl8951。与野生型相比, ygl8951的叶绿素含量与类胡萝卜素含量显著降低。电子显微镜观察表明ygl8951内叶绿体数量明显减少, 叶绿体内没有基粒类囊体, 只有类似间质类囊体结构。基因表达定量分析表明, 突变体中光系统I和光系统II基因表达水平明显下调, 核糖体结构基因和质体编码的RNA聚合酶亚基基因表达明显上调。利用ygl8951与籼稻品种黄华占杂交获得的F2分离群体, 将该基因定位于水稻第6染色体上的In/Del标记607489与607611之间, 物理距离191 kb的范围内, 通过分析确认该基因为一个新的调控叶色的基因。

关键词: 水稻, 黄绿叶, 基因定位, 遗传分析

Abstract:

A yellow-green leaf rice mutant, temporarily named as ygl8951 (yellow-green leaf 8951), was identified from 60Co γ-ray radiation mutation in japonica rice varietyNipponbare. The mutant showed albino phenotype from germination to 3-leaf-stage, then turned yellow-green phenotype till apoptosis. The contents of chlorophyll and carotenoid were obviously decreased in ygl8951 compared with the wild type. Electron microscope observation showed that no grana thylakoids but some stroma thylakoids-like structures were found in chloroplast of ygl8951 mutant. The expression levels of some genes involved in photosystem Iand photosystem II were dramatically decreased, while the ribosomal and RNA polymerase genes in chloroplast were increased in ygl8951 mutant compared with the wild type. Mapping-based cloning was used to identify the ygl8951 locus using an F2 population from a crossing between the mutant and Huanghuazhan. The result showed that the mutated locus was located in a 191 kb region on chromosome 6, which was assumed to be a new gene controlling leaf color.

Key words: Rice, Yellow-green leaf, Gene mapping, Genetic analysis

[1]Leister D. Chloroplast research in the genomic age. Trends Genet, 2003, 19: 47–56
[2]董凤高, 朱旭东, 熊振民. 以淡绿叶为标记的籼型光−温敏核不育系M2S的选育. 中国水稻科学, 1995, 9: 65–70
Dong F G, Zhu X D, Xiong Z M. Breeding of a photo-thermoperiod sensitive genic male sterile indica rice with a pale-green-leaf marker. Chin J Rice Sci, 1995, 9: 65–70 (in Chinese with English abstract)
[3]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906
[4]Wang P Y, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003
[5]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-de?cient rice mutant with impaired chlorophyllide esteri?cation in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40
[6]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818
[7]Fang J, Chai C, Qian Q, Li C L, Tang J Y, Sun L, Huang Z J, Guo X L, Sun C H, Liu M, Zhang Y, Lu Q T, Wang Y Q, Lu C M, Han B, Chen F, Cheng Z K, Chu C C. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice. Plant J, 2008, 54: 177–189
[8]Gothandam K M, Kim E S, Chung Y Y. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005, 58: 421–433
[9]Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K. Characterization of a rice nuclear- encoded plastid rna polymerase gene OsRpoTp. Plant Cell Physiol, 2004, 45: 1194–1201
[10]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikochi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 985–996
[11]Zhao C F, Xu J M, Chen Y, Mao C Z, Zhang S L, Bai Y H, Jiang D A, Wu P. Molecular cloning and characterization of OsCHR4, a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll. Planta, 2012, 236: 1165–1176
[12]Jiang H W, Li M L, Liang N T, Yan H B, Wei Y B, Xu X L, Liu J, Xu J F, Chen F, Wu G J. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209
[13]Sakuraba Y, Park S, Paek N. The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation. Mol Cells, 2015, 38: 390–395
[14]Park S, Yu J, Park J, Li J, Yoo S, Lee N, Jeong S. The senescence-induced stay-green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664
[15]Kusaba M, Ito H, Morita R, Morito R, Lida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375
[16]Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol, 1994, 144: 307–313
[17]Guillemaut P, Mardchal-Drouard L. Isolation of plant DNA: A fast, inexpensive, and reliable method. Plant Mol Biol Rep, 1992, 10: 60-65
[18]王慧娜, 初志战, 马兴亮, 李日清, 刘耀光. 高通量PCR模板植物基因组DNA制备方法. 作物学报, 2013, 39: 1200–1205
Wang H N, Chu Z Z, Ma X L, Li R Q, Liu Y G. A high through-put protocol of plant genomic DNA preparation for PCR. Act Agron Sin, 2013, 39: 1200–1205 (in Chinese with English abstract)
[19]刘朝辉, 李小艳, 张建辉, 林冬枝, 董彦君. 一个新的水稻叶绿素缺失黄叶突变体的特征及基因分子定位. 遗传, 2012, 34: 223–229
Liu C H, Li X Y, Zhang J H, Lin D Z, Dong Y J. Characteristics and molecular mapping of a novel chlorophyll-deficient yellow-leaf mutant in rice. Hereditas (Beijing), 2012, 34: 223–229 (in Chinese with English abstract)
[20]孙小秋, 王 兵, 肖云华, 万春美, 邓晓建, 王平荣. 水稻ygl98黄绿叶突变基因的精细定位与遗传分析. 作物学报, 2011, 37: 991–997
Sun X Q, Wang B, Xiao Y H, Wan C M, Deng X J, Wang P Y. Genetic analysis and fine-mapping of ygl98 yellow-green leaf gene in rice. Acta Agron Sin, 2011, 37: 991-997 (in Chinese with English abstract)
[21]孔萌萌, 余庆波, 张慧绮, 盛春, 周根余, 杨仲南. 控制水稻叶绿体发育基因OsALB23的定位. 植物生理与分子生物学学报, 2006, 32: 433–437
Kong M M, Yu Q B, Zhang H Q, Sheng C, Zhou G Y, Yang Z N. Genetic mapping of rice gene OsALB23 regulating chloroplast development. J Plant Physiol Mol Biol, 2006, 32: 433–437 (in Chinese with English abstract)
[22]Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C R, Meng B Y, Li Y Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet, 1989, 217: 185–194
[23]Cui L, Veeraraghavan N, Richter A, Wall K, Jansen R K, Leebens-Mack J, Makalowska L, Claude W. Chloroplast DB: The chloroplast genome database. Nucleic Acids Res, 2006, 34: 692–696
[24]Albertsson P. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci, 2001, 6: 349–354
[25]Hajdukiewicz P T, Allison L A, Maliga P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J, 1997, 16: 4041–4048
[26]周华, 潘佑找, 刘秀艳, 马晓静, 陈素丽, 林冬枝, 王俊敏, 董彦君, 滕胜. 一个新的水稻叶绿素缺失黄叶突变体遗传分析及其基因定位. 分子植物育种, 2013, 11: 145–151
Zhou H, Pan Y Z, Liu X Y , Ma X J, Chen S L, Lin D Z, Wang J M, Dong Y J, Teng S. Genetic analysis and molecular mapping of a novel yellow leaf mutant in rice. Mol Plant Breed, 2013, 11: 145–151 (in Chinese with English abstract)
[27]王军, 王宝和, 周丽慧, 徐洁芬, 顾铭洪, 梁国华. 一个水稻新黄绿叶突变体基因的分子定位. 中国水稻科学, 2006, 20: 455–459
Wang J, Wang B H , Zhou L H , Xu J F, Gu M H, Liang G H. Genetic analysis and molecular mapping of a new yellow-green leaf gene ygl-2 in rice. Chin J Rice Sci, 2006, 20: 455–459 (in Chinese with English abstract)
 
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!