作物学报 ›› 2016, Vol. 42 ›› Issue (05): 684-689.doi: 10.3724/SP.J.1006.2016.00684
初志战1,郭海滨2,刘小林3,陈远玲1,刘耀光1,*
CHU Zhi-Zhan1,GUO Hai-Bin2,LIU Xiao-Lin3,CHEN Yuan-Ling1,LIU Yao-Guang1,*
摘要:
从粳稻品种日本晴经60Co诱变的M1材料中发现一个黄绿叶突变体, 其叶片从萌发到三叶前期表现白化, 三叶后期开始转为黄绿叶, 直到衰老。遗传分析表明, 该突变表型受一对隐性核基因控制, 将该黄绿叶突变体暂定名为ygl8951。与野生型相比, ygl8951的叶绿素含量与类胡萝卜素含量显著降低。电子显微镜观察表明ygl8951内叶绿体数量明显减少, 叶绿体内没有基粒类囊体, 只有类似间质类囊体结构。基因表达定量分析表明, 突变体中光系统I和光系统II基因表达水平明显下调, 核糖体结构基因和质体编码的RNA聚合酶亚基基因表达明显上调。利用ygl8951与籼稻品种黄华占杂交获得的F2分离群体, 将该基因定位于水稻第6染色体上的In/Del标记607489与607611之间, 物理距离191 kb的范围内, 通过分析确认该基因为一个新的调控叶色的基因。
[1]Leister D. Chloroplast research in the genomic age. Trends Genet, 2003, 19: 47–56
[2]董凤高, 朱旭东, 熊振民. 以淡绿叶为标记的籼型光−温敏核不育系M2S的选育. 中国水稻科学, 1995, 9: 65–70 Dong F G, Zhu X D, Xiong Z M. Breeding of a photo-thermoperiod sensitive genic male sterile indica rice with a pale-green-leaf marker. Chin J Rice Sci, 1995, 9: 65–70 (in Chinese with English abstract) [3]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906 [4]Wang P Y, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003 [5]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-de?cient rice mutant with impaired chlorophyllide esteri?cation in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40 [6]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818 [7]Fang J, Chai C, Qian Q, Li C L, Tang J Y, Sun L, Huang Z J, Guo X L, Sun C H, Liu M, Zhang Y, Lu Q T, Wang Y Q, Lu C M, Han B, Chen F, Cheng Z K, Chu C C. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice. Plant J, 2008, 54: 177–189 [8]Gothandam K M, Kim E S, Chung Y Y. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005, 58: 421–433 [9]Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K. Characterization of a rice nuclear- encoded plastid rna polymerase gene OsRpoTp. Plant Cell Physiol, 2004, 45: 1194–1201 [10]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikochi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 985–996 [11]Zhao C F, Xu J M, Chen Y, Mao C Z, Zhang S L, Bai Y H, Jiang D A, Wu P. Molecular cloning and characterization of OsCHR4, a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll. Planta, 2012, 236: 1165–1176 [12]Jiang H W, Li M L, Liang N T, Yan H B, Wei Y B, Xu X L, Liu J, Xu J F, Chen F, Wu G J. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209 [13]Sakuraba Y, Park S, Paek N. The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation. Mol Cells, 2015, 38: 390–395 [14]Park S, Yu J, Park J, Li J, Yoo S, Lee N, Jeong S. The senescence-induced stay-green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664 [15]Kusaba M, Ito H, Morita R, Morito R, Lida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375 [16]Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol, 1994, 144: 307–313 [17]Guillemaut P, Mardchal-Drouard L. Isolation of plant DNA: A fast, inexpensive, and reliable method. Plant Mol Biol Rep, 1992, 10: 60-65 [18]王慧娜, 初志战, 马兴亮, 李日清, 刘耀光. 高通量PCR模板植物基因组DNA制备方法. 作物学报, 2013, 39: 1200–1205 Wang H N, Chu Z Z, Ma X L, Li R Q, Liu Y G. A high through-put protocol of plant genomic DNA preparation for PCR. Act Agron Sin, 2013, 39: 1200–1205 (in Chinese with English abstract) [19]刘朝辉, 李小艳, 张建辉, 林冬枝, 董彦君. 一个新的水稻叶绿素缺失黄叶突变体的特征及基因分子定位. 遗传, 2012, 34: 223–229 Liu C H, Li X Y, Zhang J H, Lin D Z, Dong Y J. Characteristics and molecular mapping of a novel chlorophyll-deficient yellow-leaf mutant in rice. Hereditas (Beijing), 2012, 34: 223–229 (in Chinese with English abstract) [20]孙小秋, 王 兵, 肖云华, 万春美, 邓晓建, 王平荣. 水稻ygl98黄绿叶突变基因的精细定位与遗传分析. 作物学报, 2011, 37: 991–997 Sun X Q, Wang B, Xiao Y H, Wan C M, Deng X J, Wang P Y. Genetic analysis and fine-mapping of ygl98 yellow-green leaf gene in rice. Acta Agron Sin, 2011, 37: 991-997 (in Chinese with English abstract) [21]孔萌萌, 余庆波, 张慧绮, 盛春, 周根余, 杨仲南. 控制水稻叶绿体发育基因OsALB23的定位. 植物生理与分子生物学学报, 2006, 32: 433–437 Kong M M, Yu Q B, Zhang H Q, Sheng C, Zhou G Y, Yang Z N. Genetic mapping of rice gene OsALB23 regulating chloroplast development. J Plant Physiol Mol Biol, 2006, 32: 433–437 (in Chinese with English abstract) [22]Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C R, Meng B Y, Li Y Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet, 1989, 217: 185–194 [23]Cui L, Veeraraghavan N, Richter A, Wall K, Jansen R K, Leebens-Mack J, Makalowska L, Claude W. Chloroplast DB: The chloroplast genome database. Nucleic Acids Res, 2006, 34: 692–696 [24]Albertsson P. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci, 2001, 6: 349–354 [25]Hajdukiewicz P T, Allison L A, Maliga P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J, 1997, 16: 4041–4048 [26]周华, 潘佑找, 刘秀艳, 马晓静, 陈素丽, 林冬枝, 王俊敏, 董彦君, 滕胜. 一个新的水稻叶绿素缺失黄叶突变体遗传分析及其基因定位. 分子植物育种, 2013, 11: 145–151 Zhou H, Pan Y Z, Liu X Y , Ma X J, Chen S L, Lin D Z, Wang J M, Dong Y J, Teng S. Genetic analysis and molecular mapping of a novel yellow leaf mutant in rice. Mol Plant Breed, 2013, 11: 145–151 (in Chinese with English abstract) [27]王军, 王宝和, 周丽慧, 徐洁芬, 顾铭洪, 梁国华. 一个水稻新黄绿叶突变体基因的分子定位. 中国水稻科学, 2006, 20: 455–459 Wang J, Wang B H , Zhou L H , Xu J F, Gu M H, Liang G H. Genetic analysis and molecular mapping of a new yellow-green leaf gene ygl-2 in rice. Chin J Rice Sci, 2006, 20: 455–459 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[13] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|