欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (06): 844-849.doi: 10.3724/SP.J.1006.2016.00844

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水培条件下病毒诱导棉花基因沉默体系的建立及优化

穆春,周琳,李茂营,杜明伟,张明才,田晓莉,李召虎*   

  1. 植物生长调节剂教育部工程研究中心 / 中国农业大学农学院, 北京100193
  • 收稿日期:2016-01-02 修回日期:2016-03-14 出版日期:2016-06-12 网络出版日期:2016-03-21
  • 通讯作者: 李召虎, E-mail: lizhaohu@cau.edu.cn, Tel: 010-62733049
  • 基金资助:

    本研究由国家自然科学基金项目(31271628)资助。

Establishment and Optimisation of Virus-Induced Gene Silencing in System Hydroponic Cotton

MU Chun,ZHOU Lin,LI Mao-Ying,DU Ming-Wei,ZHANG Ming-Cai,TIAN Xiao-Li,LI Zhao-Hu*   

  1. Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy, China Agricultural University, Beijing 100193, China
  • Received:2016-01-02 Revised:2016-03-14 Published:2016-06-12 Published online:2016-03-21
  • Contact: 李召虎, E-mail: lizhaohu@cau.edu.cn, Tel: 010-62733049
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271628).

摘要:

以国欣棉3号为材料,以棉花GhCLA1为指示基因,探讨了生长温度、重悬液浓度、注射时间、品种等对水培棉花pTRV介导的VIGS沉默效率的影响。结果表明在24℃条件下,出苗后3~5 d内注射能得到较高沉默效率,重悬液浓度对沉默效率没有影响;同时以注射pTRV-GFP作为空白对照可以消除插入片段对植株生长的影响,减小对照误差;水培与土培方式相比能更快更早出现沉默表型,缩短试验周期,并能诱导不同品种棉花材料GhCLA1基因沉默;利用水培棉花TRV-VIGS体系,成功抑制了棉花GhCTR1基因的表达,与对照株相比,抑制后的棉花植株出现矮化表型,说明水培棉花TRV-VIGS体系建立在棉花研究中的广谱利用性。

关键词: 棉花, VIGS, GhCLA1, 水培

Abstract:

This experiment using GhCLA1 as a marker gene and cotton variety Guoxinmian 3 plants as material was conducted to explore effects of temperature, syringe-infiltrated concentrations and time, cultivation patterns, and cotton varieties on efficiency of tobacco rattle virus (TRV)-induced gene silencing (VIGS) under hydroponic condition. The results showed that higher silencing efficiency was induced by syringe-infiltrated time at 3 to 5 days after emergence and optimum growth temperature at 24 ºC under hydroponic condition, but syringe-infiltrated concentrations could not affect VIGS silence efficiency. Moreover, pTRV-GFP as null fragment could alleviate the adverse effect of inserted fragment for plant growth. Silencing phenotype could be visible earlier in hydroponics culture than in soil culture, and the experimental period was significantly shortened under hydroponic condition. In addition, GhCLA1 could be silenced in all tested varieties (lines) under hydroponic condition. Cotton plants with silenced GhCTR1 were severely dwarfed, which indicated TRV-VIGS system can be applied widely in hydroponic cotton.

Key words: Cotton, VIGS, GhCLA1, Hydroponic

[1] Cai X Z, Xu Q F, Wang C C, Zheng Z. Development of a virus-induced gene-silencing system for functional analysis of the RPS2-dependent resistance signalling pathways in Arabidopsis. Plant Mol Biol, 2006, 62: 223–232
[2] Hou P Q, Lee Y I, Hsu K T, Lin Y T, Wu W Z, Lin J Y, Nam T N, Fu S F. Functional characterization of Nicotiana benthamiana chromomethylase 3 in developmental programs by virus-induced gene silencing. Physiol Plant, 2014, 150: 119–132
[3] 黄赛花, 郑桂杰, 杨永庆,智海剑. 利用VIGS技术对抗SMV候选基因GmZ15的功能分析. 大豆科学, 2015, 34: 582–587
Huang S H, Zheng G J, Yang Y Q, Zhi H J. Analysis on the candidate resistance gene GmZ15 to soybean mosaic virus by VIGS. Soybean Sci, 2015, 34: 582–587 (in Chinese with English abstract)
[4] Becker A, Lange M. VIGS–genomics goes functional. Trends Plant Sci , 2010, 15: 1–4
[5] Ratcliff F G, MacFarlane S A, Baulcombe D C. Gene silencing without DNA: RNA-mediated cross protection between viruses. Plant Cell, 1999, 11: 1207–1215
[6] Gao X Q, Wheeler T, Li Z H, Kenerley C M, He P, Shan L B. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J, 2011, 66: 293–305
[7] 王丽, 穆春, 张明才, 杜明伟, 田晓莉, 李召虎.GhCPS基因沉默对棉花幼苗生长和内源激素含量的影响. 棉花学报, 2014, 26: 189–196
Wang L, Mu C, Zhang M C, Du M W, Tian X L, Li Z H. Effect of silencing GhCPS on the growth and endogenous hormone content of cotton seedlings(Gossypium himutum L.) Cotton Sci, 2014, 26: 189–196 (in Chinese with English abstract)
[8] 王心宇, 吕坤, 蔡彩平, 徐君, 郭旺珍. TRV病毒介导的基因沉默体系在棉花中的建立及应用. 作物学报, 2014, 40: 1356–1363
Wang X Y, Lü K, Cai C P, Xu J, Guo W Z. Establishment and application of TRV-mediated virus-induced gene silencing in cotton. Acta Agron Sin, 2014, 40: 1356–1363 (in Chinese with English abstract)
[9] Faivre-Rampant O, Gilroy E M, Hrubikova K, Hein I, Millam S, Loake G J, Birch P, Taylor M, Lacomme C. Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol, 2004, 134:1308–1316
[10] Liu E, Page J E. Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods, 2008, 4: 1–13
[11] Lichtenthaler H K, Wellbum A R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans, 1983, 11: 591–592
[12] Fu D Q, Zhu B Z, Zhu H L, Zhang H X, Xie Y H, Jiang W B, Zhao X D, Luo Y B. Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity. Mol. Cells, 2006, 21: 153–160
[13] Tuttle J R, Idris A M, Brown J K, Haigler C H, Robertson D. Geminivirus-mediated gene silencing from cotton leaf crumple virus is enhanced by low temperature in cotton. Plant Physiol. 2008, 148: 41–50
[14] Szittya G, Silhavy D, Molnar A, Havelda Z, Lovas A, Lakatos L, Banfalvi Z, Burgyan J. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. Embo J, 2003, 22: 633–640
[15] Burch‐Smith T M, Anderson J C, Martin G B, Dinesh‐Kumar S P. Applications and advantages of virus‐induced gene silencing for gene function studies in plants. Plant J , 2004, 39: 734–746
[16] Nethra P, Nataraja K N, Rama N, Udayakumar M. Standardization of environmental conditions for induction and retention of post-transcriptional gene silencing using tobacco rattle virus vector. Curr Sci, 2006, 90: 431–435
[17] Ekengren S K, Liu Y L, Schiff M, Dinesh-Kumar S P, Martin G B, Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J, 2003, 36: 905–917
[18] Hartl M, Merker H, Schmidt D D, Baldwin I T. Optimized virus-induced gene silencing in Solanum nigrum reveals the defensive function of leucine aminopeptidase against herbivores and the shortcomings of empty vector controls. New Phytol, 2008, 179: 356–365
[19] Wang C C, Cai X Z, Wang X M, Zheng Z. Optimisation of tobacco rattle virus-induced gene silencing in Arabidopsis. Funct Plant Biol, 2006, 33: 347–355
[20] Kieber J J, Rothenberg M, Roman G, Feldmann K A, Ecker J R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raffamily of protein kinases. Cell, 1993, 72: 427–441

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!