欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (07): 1026-1036.doi: 10.3724/SP.J.1006.2016.01026

• 耕作栽培·生理生化 • 上一篇    下一篇

干湿交替灌溉对水稻产量与水分利用效率的影响

褚光,展明飞,朱宽宇,王志琴,杨建昌*   

  1. 扬州大学江苏省作物遗传生理重点实验室 / 粮食作物现代产业技术协同创新中心,江苏扬州 225009
  • 收稿日期:2015-12-29 修回日期:2016-05-09 出版日期:2016-07-12 网络出版日期:2016-05-12
  • 通讯作者: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317
  • 基金资助:

    本研究由国家自然科学基金项目(31271641, 31461143015, 31471438),江苏省农业三新工程项目(SXGC[2014]313), 江苏高校优势学科建设工程资助项目(PAPD),江苏省普通高校研究生科研创新计划项目(KYZZ_0364)和扬州大学高端人才支持计划项目(2015-01)资助。

Effects of Alternate Wetting and Drying Irrigation on Yield and Water Use Efficiency of Rice

CHU Guang,ZHAN Ming-Fei,ZHU Kuan-Yu,WANG Zhi-Qin,YANG Jian-Chang*   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
  • Received:2015-12-29 Revised:2016-05-09 Published:2016-07-12 Published online:2016-05-12
  • Contact: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317
  • Supported by:

    The research was supported by the National Natural Science Foundation of China (31461143015, 31271641, 31471438), Jiangsu “Three-innovation” Agricultural Project (SXG2014313), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Innovation Research Program for Graduate Students for Higher Education of Jiangsu Province (KYZZ_0364), and the Top Talent Supporting Program of Yangzhou University (2015-01).

摘要:

本研究旨在阐明干湿交替灌溉影响水稻产量的生理机制。大田种植3个当地高产水稻品种武运粳24 (粳稻)、扬两优6号(两系杂交籼稻)与甬优2640 (三系籼/粳杂交粳稻)。自移栽后7 d设置:常规灌溉(CI,保持水层)和干湿交替灌溉(AWD),观察这2种灌溉模式对水稻根系与地上部生长发育的影响。结果表明,与CI相比,AWD可以显著提高水稻产量与水分利用效率,3个供试品种产量分别提高了5.34%、5.85%和6.62%,水分利用效率分别提高了28.9%、25.3%和27.6%。产量与水分利用效率的提高主要得益于水稻根系和地上部植株的生理功能的改善,表现出灌浆期较高的根系氧化力、根系伤流液强度、根系与叶片中玉米素与玉米素核苷的含量、剑叶净光合速率、籽粒中较高的蔗糖合酶、腺苷二磷酸葡萄糖焦磷酸化酶和淀粉合酶活性、较大的深层(10~20 cm)根系、较高的分蘖成穗率与叶面积指数。

关键词: 水稻, 产量, 根系, 水分利用率, 干湿交替灌溉

Abstract:

Alternate wetting and drying (AWD) irrigation has been widely adopted to replace conventional irrigation (CI) for saving water and increasing water use efficiency (WUE) in irrigated rice systems in China. However, there is limited information about how AWD affects yield, WUE, and root and shoot growth and development. To fill this knowledge gap, we conducted the experiment using three local high-yielding rice cultivars, Wuyunjing 24 (japonica), Yangliangyou 6 (two-line indica hybrid rice) and Yongyou 2640 (three-line indica/japonica hybrid rice) under the two water managements, CI and AWD, during the whole growing season. The results showed that, when compared with CI, AWD increased grain yield by 5.34%, 5.85%, and 6.62% and WUE by 28.9%, 25.3%, and 27.6%, respectively which mainly attributed to greater root oxidation activity, amount of root bleeding sap, content of cytokinins (zeatin + zeatin riboside) in roots and leaves, highten photosynthetic rate of flag leaf, deeper root distribution, increased productive tillers and leaf area, and enhanced activities of enzymes involved in sucrose-to-starch conversion in grains during grain filling. The results demonstrate that AWD is an effective practice to increase grain yield and water use efficiency through enhancing root and shoot growth and development.

Key words: Rice, Yield, Root, Water use efficiency, Alternate wetting and drying

[1]Bouman B, Tuong T. Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manage, 2001, 49: 11–30
[2]Belder P, Bouman B, Cabangon R, Guoan L, Quilang E, Li Y, Spiertz J, Tuong T. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manage, 2004, 65: 193–210
[3]Bouman B. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agric Syst, 2007, 93: 43–60
[4]Devkota K, Hoogenboom G, Boote K, Singh U, Lamers J, Devkota M, Vlek P. Simulating the impact of water saving irrigation and conservation agriculture practices for rice–wheat systems in the irrigated semi-arid drylands of central Asia. Agric For Meteorol, 2015, 214: 266–280
[5]Ockerby S, Fuka S. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Res, 2001, 69: 215–226
[6]Shao G, Deng S, Liu N, Yu S, Wang M, She D. Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice. Eur J Agron, 2015, 53: 1–9
[7]Tao H, Brueck H, Dittert K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Res, 2006, 95: 1–12
[8]Lampayan R, Rejesus R, Singleton G, Bouman B. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res, 2015, 170: 95–108
[9]Ye Y, Liang X, Chen Y, Liu J, Gu J, Guo R, Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res, 2013, 144: 212–224
[10]Arjun P, Van T, Duong Q, Thi P, Thi L, Lars S, Andreas N. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric Ecosyst Environ, 2014, 196: 137–146
[11]Liu L, Chen T, Wang Z, Zhang H, Yang J, Zhang J. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Res, 2013, 154: 226–235
[12]Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci, 2009, 49: 2246–2260
[13]Yang J, Zhang J. Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010, 61: 3177–3189
[14]Tabbal D, Bouman B, Bhuiyan S, Sibayan E, Sattar M. On-farm strategies for reducing water input in irrigated rice: case studies in the Philippines. Agric Water Manag, 2002, 56: 93–112
[15]杨建昌.水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36−46
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36−46 (in Chinese with English abstract)
[16]陈达刚, 周新桥, 李丽君, 刘传光, 张旭, 陈友订. 华南主栽高产籼稻根系形态特征及其与产量构成的关系. 作物学报, 2013, 39: 1899–1908
Chen D G, Zhou X Q, Li L J, Liu C G, Zhang X, Chen Y D. Relationship between root morphological characteristics and yield components of major commercial indica rice in south China. Acta Agron Sin, 2013, 39: 1899–1908 (in Chinese with English abstract)
[17]褚光, 刘洁, 张耗, 杨建昌. 超级稻根系形态生理特征及其与产量形成的关系. 作物学报, 2014, 40: 850–858
Chu G, Liu J, Zhang H, Yang J C. Morphology and physiology of roots and their relationships with yield formation in super rice. Acta Agron Sin, 2014, 40: 850–858 (in Chinese with English abstract)
[18]李洪亮, 孙玉友, 曲金玲, 魏才强, 孙国宏, 赵云彤, 柴永山. 施氮量对东北粳稻根系形态生理特征的影响. 中国水稻科学, 2012, 26: 723–730
Li H L, Sun Y Y, Qu J L, Wei C Q, Sun G H, Zhao Y T, Chai Y S. Influence of nitrogen levels on morphological and physiological characteristics of root system in japonica rice in northeast China. Chin J Rice Sci, 2012, 26: 723–730 (in Chinese with English abstract)
[19]李杰, 张洪程, 常勇, 龚金龙, 胡雅杰, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 高产栽培条件下种植方式对超级稻根系形态生理特征的影响. 作物学报, 2011, 37: 2208–2220
Li J, Zhang H C, Chang Y, Gong J L, Hu Y J, Long H Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition. Acta Agron Sin, 2011, 37: 2208−2220 (in Chinese with English abstract)
[20]褚光, 周群, 薛亚光, 颜晓元, 刘立军, 杨建昌. 栽培模式对杂交粳稻常优5号根系形态生理性状和地上部生长的影响.作物学报, 2014, 40: 949−955
Chu G, Zhou Q, Xue Y G, Yan X Y, Liu L J, Yang J C. Effects of cultivation patterns on root morph-physiological traits and aboveground development of japonica hybrid rice cultivar Changyou 5. Acta Agron Sin, 2014, 40: 949−955 (in Chinese with English abstract)
[21]Zhang H, Li H, Wang Z , Yang J , Zhang J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. J Exp Bot, 2012, 63: 215–227
[22]陈婷婷, 许更文, 钱希旸, 王志琴, 张耗, 杨建昌. 花后轻干湿交替灌溉提高水稻籽粒淀粉合成相关基因的表达. 中国农业科学, 2015, 48: 1288-1299
Chen T T, Xu G W, Qian X Y, Wang Z Q, Zhang H, Yang J C. Post-anthesis alternate wetting and moderate soil drying irrigation enhance gene expressions of enzymes involved in starch synthesis in rice grains. Sci Agric Sin, 2015, 48: 1288-1299 (in Chinese with English abstract)
[23]付景, 刘洁, 曹转勤, 王志琴, 张耗, 杨建昌. 结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响. 作物学报, 2014, 40: 1056−1065
Fu J, Liu J, Cao Z Q, Wang Z Q, Zhang H, Yang J C. Effects of alternate wetting and drying irrigation during grain filling on the seed-setting rate and grain weight of two super rice cultivars. Acta Agron Sin, 2014, 40: 1056−1065 (in Chinese with English abstract)
[24]杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究. 中国农业科学, 1996, 29: 58–66
Yang J C, Wang Z Q, Zhu Q S. Effect of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture. Sci Agric Sin, 1996, 29: 58–66 (in Chinese with English abstract)
[25]陈远平, 杨文钰. 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定. 四川农业大学学报, 2005, 23: 498−500
Chen Y P, Yang W Y. Determination of GA3, IAA, ABA and ZT in dormant buds of allium ovalif olium by HPLC. J Sichuan Agric Univ, 2005, 23: 498−500 (in Chinese with English abstract)
[26]Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69−81
[27]Yang J, Zhang J, Wang Z, Xu G, Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621−1629
[28]Ramasamy S, Berge H, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res, 1997, 51: 65–82
[29]Chu G, Chen T, Wang Z, Yang, J, Zhang J. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 162: 108−119
[30]Li H, Liu L, Wang Z, Yang J, Zhang J. Agronomic and physiological performance of high-yielding wheat and rice in the lower reaches of Yangtze River of China. Field Crops Res, 2012, 133: 119−129
[31]Yao F, Huang J, Cui K, Nie L, Xiang J, Liu X, Wu W, Chen M, Peng S. Agronomic performance of high-yielding rice variety grown under alternate wetting an drying irrigation. Field Crops Res, 2012, 126: 16−22
[32]Chu G, Wang Z, Zhang H, Liu L, Yang J, Zhang J. Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation. Food & Energy Security, 2015, 4: 238−254
[33]Ju C, Buresh R, Wang Z, Zhang H, Liu L, Yang J, Zhang J. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47–55
[34]郑华斌, 姚林, 刘建霞, 贺慧, 陈阳, 黄璜. 种植方式对水稻产量及根系性状的影响. 作物学报, 2014, 40: 667−677
Zheng H B, Yao L, Liu J X, He H, Chen Y, Huang H. Effect of ridge and terraced cultivation on rice yield and root trait. Acta Agron Sin, 2014, 40: 667−677 (in Chinese with English abstract) 
[35]Chu G, Wang Z, Zhang H, Yang J, Zhang J. Agronomic and physiological performance of rice under integrative crop management. Agron J, 2016, 108: 1–12
[36]戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012, 45: 4770−4781
Ji L, Li T X, Zhang X Z, Yu H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency. Sci Agric Sin, 2012, 45: 4770−4781 (in Chinese with English abstract)
[37]Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 2001, 127: 315−323
[38]Nakamura Y, Yuki K, Park S. Carbohyrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 30: 833−839
[39]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm. Plant Sci, 1992, 82: 15−20
[40]Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995, 35: 827−831

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[14] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[15] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!