欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (09): 1342-1351.doi: 10.3724/SP.J.1006.2016.01342

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

海岛棉转录因子基因GbMYB60的克隆、表达及其抗逆性分析

高巍**,刘会利**,田新权,张慧,宋洁,杨勇,龙璐,宋纯鹏*   

  1. 河南大学生命科学学院 / 棉花生物学国家重点实验室 / 植物逆境生物学重点实验室,河南开封 475004
  • 收稿日期:2016-01-29 修回日期:2016-06-20 出版日期:2016-09-12 网络出版日期:2016-06-27
  • 通讯作者: 宋纯鹏, E-mail: songcp@henu.edu.cn, Tel: 0371-23880002
  • 基金资助:

    本研究由国家重点研究基础发展计划项目(2012CB1143001), 棉花生物学国家重点实验室开放课题(CB2015A31)和河南省教育厅项目(15A180028, 15A180029)资助。

Cloning, Expression, and Functional Analysis of Transcription Factor GeneGbMYB60 in Cotton

GAO Wei**,LIU Hui-Li**,TIAN Xin-Quan,ZHANG Hui,SONG Jie,YANG Yong,LONG Lu,SONG Chun-Peng*   

  1. School of Life Science, Henan University / State Key Laboratory of Cotton Biology / Henan Key Laboratory of Plant Stress Biology, Kaifeng, Henan 475004, China
  • Received:2016-01-29 Revised:2016-06-20 Published:2016-09-12 Published online:2016-06-27
  • Contact: 宋纯鹏, E-mail: songcp@henu.edu.cn, Tel: 0371-23880002
  • Supported by:

    This work was supported by the National Key Basic Special Funds (2012CB1143001), State Key Laboratory of Cotton Biology Open Fund (CB2015A31), and Henan Provincial Educational Department Foundation of China (15A180028, 15A180029).

摘要:

MYB转录因子是在真核生物细胞内广泛存在的一类转录因子蛋白,在植物的生长发育、代谢调节、抗病抗逆、以及激素介导的信号路径等方面都发挥着重要的作用。本研究从海岛棉品种海7124中克隆得到一个MYB转录因子基因,根据序列同源性和进化分析,将其命名为GbMYB60。该基因序列长990 bp,编码一个36.9 kD的R2R3类MYB转录因子蛋白。GbMYB60蛋白被特异地定位于植物细胞核。GbMYB60基因的表达水平较低,在真叶中优势表达,根系中表达量最低。该基因受甘露醇、NaCl、低温、高温等非生物逆境,以及脱落酸、乙烯利、茉莉酸甲酯和水杨酸等植物激素的诱导上调表达。利用病毒诱导的基因沉默技术在海岛棉中干涉GbMYB60发现,降低GbMYB60基因的表达水平,使棉花幼苗对高盐胁迫的耐受性降低;但GbMYB60干涉的植株在甘露醇溶液的处理下与对照植株并无显著的抗性差异。

关键词: 棉花, MYB转录因子, 盐, 甘露醇, 非生物胁迫

Abstract:

MYB transcription factors are conserved proteins in all eukaryotic cell, which play important roles in plant growth, development, metabolism, abiotic and biotic stress resistance, as well as phytohormone-mediated signal transduction. In this research, a MYB gene was isolated from the sea-island cotton cultivar Hai 7124. This gene was named GbMYB60 based on the sequence similarity search and phylogenetic analysis. The full-length of GbMYB60coding sequenceis 990 bp, and GbMYB60 encodes a 36.9 kD R2R3-type MYB protein, which is specifically located in nucleus of plant cell. GbMYB60 was preferentially expressed in leaf and induced by abiotic stresses (such as salt, mannitol, cold, and heat) and phytohormones (abscisic acid, ethephon, methyl jasmonate and salicylic acid) treatments, but the general expression of GbMYB60 was low in all tissues. Salt and mannitol tolerances were analyzed in control and GbMYB60 silenced-cotton generated by virus-induced gene silencing system, and the results showed that GbMYB60 positively regulated cotton tolerance to salt but not to mannitol.

Key words: Cotton, MYB transcription factor, Salt, Mannitol, Abiotic stress

[1] Ambawat S, Sharma P, Yadav N R, Yadav R C. MYB transcription factor genes as regulators for plant responses: an overview. Plant Mol Biol, 2013, 19: 307–321
[2] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573–581
[3] Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci, 2015, 16: 15811–15851
[4] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78
[5] Guo Y F, Gan S S. AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiol, 2011, 156: 1612–1619
[6] Oh J E, Kwon Y, Kim J H, Noh H, Hong S W, Lee H. A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol Biol, 2011, 77: 91–103
[7] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138–1152
[8] Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol, 2005, 15: 1196–1200
[9] Seo P J, Park C M. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New phyto, 2010, 186: 471–483
[10] Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou D X, Yang W, Zhao Y.The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice.Plant Sci, 2015, 236: 146–156
[11] Vélez-Bermúdez I C, Salazar-Henao J E, Fornalé S, López-Vidriero I, Franco-Zorrilla J M, Grotewold E, Gray J, Solano R, Schmidt W, Pagés M, Riera M, Caparros-Ruiz D. A MYB/ZML complex regulates wound-induced lignin genes in maize. Plant Cell, 2015, 27: 3245–3259
[12] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531–537
[13] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015, 33: 524–530
[14] Pu L, Li Q, Fan X P, Yang W C, Xue Y B. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics, 2008, 180: 811–820
[15] Suo J F, Liang X O, Pu L, Zhang Y S, Xue Y B. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium Hirsutum L.). Bba-Gene Struct Expr, 2003, 1630: 25–34
[16] Walford S A, Wu Y, Llewellyn D J, Dennis E S. GhMYB25-like: a key factor in early cotton fibre development. Plant J, 2011, 65: 785–797
[17] Machado A, Wu Y, Yang Y, Llewellyn D J, Dennis E S. The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J, 2009, 59: 52–62
[18] Li Y, Jiang J, Du M L, Li L, Wang X L, Li X B. A cotton gene encoding MYB-like transcription factor is specifically expressed in pollen and is involved in regulation of late anther/pollen development. Plant Cell Physiol, 2013, 54: 893–906
[19] Chen T Z, Li W J, Hu X H, Guo J R, Liu A M, Zhang B L. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol, 2015, 56: 917–929
[20] Jin S X, Zhang X L, Liang S G, Nie Y L, Guo X P, Huang C. Factors affecting transformation efficiency of embryogenic callus of upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens.Plant Cell Tiss Organ Cult, 2005, 81: 229–237
[21] Gao X Q, Wheeler T, Li Z H, Kenerley C M, He P, Shan L B. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J, 2011, 66: 293–305
[22] Gao W, Long L, Zhu L F, Xu L, Gao W H, Sun L Q, Liu L L, Zhang X L. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics, 2013, 12: 3690–3703
[23] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008, 3: 1101–1108
[24] Long L, Gao W, Xu L, Liu M, Luo X Y, He X, Yang X Y, Zhang X L, Zhu L F. GbMPK3, a mitogen-activated protein kinase from cotton, enhances drought and oxidative stress tolerance in tobacco. Plant Cell Tiss Organ Cult, 2014, 116: 153–162
[25] Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: a glance at the protein level. Mol Plant, 2015, 8: 378–388
[26] Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci, 2014, 5: 151
[27] Liu J G, Li Y, Wang W, Gai J Y, Li Y. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean, BMC Genomics, 2016, 17: 223
[28] Park J S, Kim J B, Cho K J, Cheon C I, Sung M K, Choung M G, Roh K H. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa). Plant Cell Rep, 2008, 27: 985–994
[29] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796–815
[30] Beckers G J, Jaskiewicz M, Liu Y, Underwood W R, He S Y, Zhang S, Conrath U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell, 2009, 21: 944–953

[1] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[7] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[10] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[11] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[12] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[13] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[14] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!