欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (11): 1629-1637.

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生Δ9-硬脂酰-ACP脱氢酶基因启动子的克隆及功能分析

石磊,苗利娟,齐飞艳,张忠信,高伟,孙子淇,黄冰艳,董文召,汤丰收,张新友*   

  1. 河南省农业科学院经济作物研究所/农业部黄淮海油料作物重点实验室/河南省油料作物遗传改良重点实验室/花生遗传改良国家地方联合工程实验室,河南郑州450002
  • 收稿日期:2016-02-29 修回日期:2016-07-11 出版日期:2016-11-12 网络出版日期:2016-08-11
  • 通讯作者: 张新友,E-mail:haasz@126.com,Tel:0371-65729560
  • 基金资助:

    本研究由国家高技术研究与发展计划(863计划)项目(2013AA102602-6),河南省重大科技专项(141100110600),国家现代农业产业技术体系建设专项(CARS-14),河南省现代农业产业技术体系建设项目(S2012-5)和河南省农业科学院优秀青年基金(2013YQ11)资助。

Cloning and Functional Analysis of Peanut Δ9-Stearoyl-Acyl Carrier Protein Desaturase Promoter

SHI Lei, MIAO Li-Juan, QI Fei-Yan, ZHANG Zhong-Xin, GAO Wei, SUN Zi-Qi, HUANG Bing-Yan, DONG Wen-Zhao, TANG Feng-Shou, and ZHANG Xin-You*   

  1. Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture / Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
  • Received:2016-02-29 Revised:2016-07-11 Published:2016-11-12 Published online:2016-08-11
  • Contact: Zhang Xinyou,E-mail:haasz@126.com,Tel:0371-65729560
  • Supported by:
    This study was supported by National High-Tech R&D Program of China (863 Program) (2013AA102602-6), the Key Project of Science and Technology of Henan Province (141100110600), the China Agriculture Research System (CARS-14), the Henan Provincial Agriculture Research System (S2012-5), and the Scientific Foundation for Excellent Young Scholars of Henan Academy of Agricultural Sciences (2013YQ11).

摘要:

Δ9-硬脂酰-ACP脱氢酶(SAD)是决定植物体内饱和脂肪酸与不饱和脂肪酸比值的关键酶。以花生品种豫花9326基因组DNA为模板,通过基因组步移技术,克隆到花生Δ9-硬脂酰-ACP脱氢酶基因(AhSAD)起始密码子ATG上游720 bp片段,利用5? RACE方法获得了该基因的5? UTR序列,通过序列比对确定720 bp片段为AhSAD启动子区域。PLACE在线启动子预测分析表明,该序列具有真核生物启动子必需的核心元件TATA-box和CAAT-box,含有多个与光诱导和激素响应相关顺式序列元件。将AhSAD启动子片段替换pBI121质粒中的CaMV35S启动子驱动下游GUS基因表达,构建植物表达载体pBI-PAhSAD。通过农杆菌介导法转化拟南芥和在花生不同组织中瞬时表达,利用GUS组织化学染色研究其表达特性。表明,在拟南芥和花生受体中,AhSAD启动子主要调控下游基因在根、茎、叶片和子叶中表达,在花生的果针中也检测到GUS活性;拟南芥的茎生叶只有叶脉中具有GUS活性,而花生整个叶片中都具有GUS活性。

关键词: 花生, Δ9-硬脂酰-ACP脱氢酶基因(SAD), 启动子, 基因组步移, GUS报告基因

Abstract:

The Δ9-stearoyl-acyl carrier protein desaturase (SAD) plays key roles in determining the ratio of saturated to unsaturated fatty acids in higher plants. The 720 bp 5′ flanking sequence of peanut SAD (AhSAD) gene was isolated from the genomic DNA of peanut cultivar Yuhua 9326 by nested PCR using genomic walking method. The fragment of 5′ UTR was obtained using 5′ RACE (Rapid Amplification of cDNA End), confirming that the 720 bp 5′ flanking sequence is promoter fragment based on sequence alignments. Bioinformatics analysis indicated that AhSAD promoter contained several light, hormone responsive elements and enhancer-like elements as well as CAAT box and TATA box. To study the function of this promoter, we constructed a binary expression vector pBI-PAhSAD by replacing CaMV35S promoter of pBI121 with the AhSAD promoter, which was introduced into Arabidopsis and transiently expressed in peanut, respectively, by Agrobacterium-mediated transformation. Histochemical staining analysis showed that the GUS gene mainly expressed in roots, stem, leaves, cotyledon and peanut pegs. The histochemical staining was observed in peanut whole leaves, while only in Arabidopsis veins of cauline leaves.

Key words: Peanut(Arachis hypogaea L.), Δ9-Stearoyl-ACPdesaturase(SAD), Promoter, Genomicwalking, GUSreportergene

[1]SchwingshacklL,HoffmannG.Monounsaturatedfattyacidsandriskofcardiovasculardisease:synopsisoftheevidenceavailablefromsystematicreviewsandmeta-analyses.Nutrients,2012,4:1989–2007 [2]O’ByrneDJ,KnauftDA,ShiremanRB.Lowfat–monounsaturatedrichdietscontaininghigh-oleicpeanutsimproveserumlipoproteinprofiles.Lipids,1997,32:687–695 [3]CarrilloC,CaviaMdM,RoelofsH,WantenG,Alonso-TorreSR.Activationofhumanneutrophilsbyoleicacidinvolvestheproductionofreactiveoxygenspeciesandariseincytosoliccalciumconcentration:acomparisonwithN-6polyunsaturatedfattyacids.CellPhysiolBiochem,2011,28:329–338 [4]CarrilloC,CaviaMM,Alonso-TorreS.Roleofoleicacidinimmunesystem;mechanismofaction;areview.NutrHosp,2012,27:978–90 [5]DerbyshireEJ.Areviewofthenutritionalcomposition,organolepticcharacteristicsandbiologicaleffectsofthehigholeicpeanut.IntJFoodSciNutr,2014,65:1–10 [6]O’KeefeSF,WileyVA,KnauftDA.Comparisonofoxidativestabilityofhigh-andnormal-oleicpeanutoils.JAOCS,1993,70:489–492 [7]PatteeHE,IsleibTG,MooreKM,GorbetDW,GiesbrechtFG.Effectofhigh-oleictraitandpastestoragevariablesonsensoryattributestabilityofroastedpeanuts.JAgricFoodChem,2003,50:7366–7370 [8]BoltonGE,SandersTH.Effectofroastingoilcompositiononthestabilityofroastedhigh-oleicpeanuts.JAOCS,2002,79:129–132 [9]LindqvistY,HuangW,SchneiderG,ShanklinJ.CrystalstructureofΔ9stearoyl-acylcarrierproteindesaturasefromcastorseedanditsrelationshiptootherdi-ironproteins.EMBOJ,1996,15:4081–4092 [10]KachrooA,ShanklinJ,WhittleE,LapchykL,HildebrandD,KachrooP.TheArabidopsisstearoyl-acylcarrierprotein-desaturasefamilyandthecontributionofleafisoformstooleicacidsynthesis.PlantMolBiol,2007,63:257–271 [11]JungS,TatePL,HornR,KochertG,MooreK,AbbottAG.Thephylogeneticrelationshipofpossibleprogenitorsofthecultivatedpeanut.JHered,2003,94:334–340 [12]RuddlePII,WhettenR,CardinalA,UpchurchRG,MirandaL.EffectofanovelmutationinaΔ9-stearoyl-ACP-desaturaseonsoybeanseedoilcomposition.TheorApplGenet,2013,126:241–249 [13]SlocombeSP,PiffanelliP,FairbairnD,BowraS,HatzopoulosP,TsiantisM,MurphyDJ.Temporalandtissue-specificregulationofaBrassicanapusstearoyl-acylcarrierproteindesaturasegene.PlantPhysiol,1994,104:1167–1176 [14]LuoT,PengS,DengW,MaD,XuY,XiaoM,ChenF.Characterizationofanewstearoyl-acylcarrierproteindesaturasegenefromJatrophacurcas.BiotechnolLett,2006,28:657–662 [15]GuoZF,LiFZ,MaXG,LinF,MaH,ChenLJ,ZhongM,BaiLP,YiY.Molecularcloningoftwonovelstearoyl-acyldesaturasegenesfromwinternesswheat.GenesGenom,2011,33:583–589 [16]RameshAM,KesariV,RanganL.Characterizationofastearoyl-acylcarrierproteindesaturasegenefrompotentialbiofuelplant,PongamiapinnataL.Gene,2014,542:113–121 [17]LuoT,DengWY,ZengJ,ZhangFL.Cloningandcharacterizationofastearoyl–acylcarrierproteindesaturasegenefromCinnamomumlongepaniculatum.PlantMolBiolRep,2009,27:13–19 [18]WangH,CaoF,ZhangW,WangG,YuW.Cloningandexpressionofstearoyl-ACPdesaturaseandtwooleatedesaturasesgenesfromGinkgobilobaL.PlantMolBiolRep,2012,31:633–648 [19]GaoL,SunR,LiangY,ZhangM,ZhengY,LiD.CloningandfunctionalexpressionofacDNAencodingstearoyl-ACPΔ9-desaturasefromtheendospermofcoconut(CocosnuciferaL.).Gene,2014,549:70–76 [20]RajwadeAV,KadooNY,BorikarSP,HarsulkarAM,GhorpadePB,GuptaVS.DifferentialtranscriptionalactivityofSAD,FAD2andFAD3desaturasegenesindevelopingseedsoflinseedcontributestovarietalvariationinα-linolenicacidcontent.Phytochemistry,2014,98:41–53 [21]ThambugalaD,DuguidS,LoewenE,RowlandG,BookerH,YouFM,CloutierS.Geneticvariationofsixdesaturasegenesinflaxandtheirimpactonfattyacidcomposition.TheorApplGenet,2013,126:2627–2641 [22]ThambugalaD,CloutierS.Fattyacidcompositionanddesaturasegeneexpressioninflax(LinumusitatissimumL.).JApplGenet,2014,55:423–432 [23]ZhangY,MaximovaSN,GuiltinanMJ.Characterizationofastearoyl-acylcarrierproteindesaturasegenefamilyfromchocolatetree,TheobromacacaoL.FrontPlantSci,2015,6:239.doi:10.3389/fpls.2015.00239.eCollection2015 [24]ChiX,YangQ,PanL,ChenM,HeY,YangZ,YuS.Isolationandcharacterizationoffattyaciddesaturasegenesfrompeanut(ArachishypogaeaL.).PlantCellRep,2011,30:1393–1404 [25]KlinkenbergJ,FaistH,SaupeS,LambertzS,KrischkeM,StinglN,FeketeA,MuellerMJ,FeussnerI,HedrichR,DeekenR.Twofattyaciddesaturases,STEAROYL-ACYLCARRIERPROTEINΔ9-DESATURASE6andFATTYACIDDESATURASE3,areinvolvedindroughtandhypoxiastresssignalinginArabidopsiscrowngalls.PlantPhysiol,2014,164:570–583 [26]SlocombeSP,CumminsI,JarvisRP,MurphyDJ.Nucleotidesequenceandtemporalregulationofaseed-specificBrassicanapuscDNAencodingastearoyl-acylcarrierprotein(ACP)desaturase.PlantMolBiol,1992,20:151–155 [27]ZhaoN,ZhangY,LiQ,LiR,XiaX,QinX,GuoH.Identificationandexpressionofastearoyl-ACPdesaturasegeneresponsibleforoleicacidaccumulationinXanthocerassorbifoliaseeds.PlantPhysiolBiochem,2015,87:9–16 [28]LiuQ,SinghSP,GreenAG.High-stearicandhigh-oleiccottonseedoilsproducedbyhairpinRNA-mediatedpost-transcriptionalgenesilencing.PlantPhysiol,2002,129:1732–43 [29]KachrooA,LapchykL,FukushigeH,HildebrandD,KlessigD,KachrooP.Plastidialfattyacidsignalingmodulatessalicylicacid-andjasmonicacid-mediateddefensepathwaysintheArabidopsisssi2mutant.PlantCell,2003,15:2952–2965 [30]CraigW,LenziP,ScottiN,DePalmaM,SaggeseP,CarboneV,McGrathCurranN,MageeAM,MedgyesyP,KavanaghTA,DixPJ,GrilloS,CardiT.Transplastomictobaccoplantsexpressingafattyaciddesaturasegeneexhibitalteredfattyacidprofilesandimprovedcoldtolerance.TransgenicRes,2008,17:769–782 [31]单雷,唐桂英,徐平丽,赵学彬,柳展基.花生质体型酰基载体蛋白基因5′侧翼调控序列的克隆与分析.作物学报,2014,40:381–389 ShanL,TangGY,XuPL,ZhaoXB,LiuZJ.Cloningandanalysisof5′flankingregionsofArachisishypogaeaL.genesencodingplastidialacylcarrierprotein.ActaAgronSin,2014,40:381–389(inChinesewithEnglishabstract) [32]BrandY,HovavR.Identificationofsuitableinternalcontrolgenesforquantitativereal-timePCRexpressionanalysesinpeanut(Arachishypogaea).PeanutSci,2010,37:12–19 [33]ChuY,HolbrookCC,Ozias-AkinsP.TwoallelesofahFAD2Bcontrolthehigholeicacidtraitincultivatedpeanut.CropSci,2009,49:2029–2036 [34]KodamaH,HoriguchiG,NishiuchiT,NishimuraM,IbaK.Fattyaciddesaturationduringchillingacclimationisoneofthefactorsinvolvedinconferringlow-temperaturetolerancetoyoungtobaccoleaves.PlantPhysiol,1995,107:1177–1185 [35]GengL,DuanX,LiangC,ShuC,SongF,ZhangJ.Miningtissue-specificcontigsfrompeanut(ArachishypogaeaL.)forpromotercloningbydeeptranscriptomesequencing.PlantCellPhysiol,2014,55:1793–1801 [36]LiC,WuK,FuG,LiY,ZhongY,LinX,ZhouY,TianL,HuangS.Regulationofoleosinexpressionindevelopingpeanut(ArachishypogaeaL.)embryosthroughnucleosomelossandhistonemodifications.JExpBot,2009,60:4371–4382 [37]尹梦回,董静,李先碧,侯磊,罗明,李德谋,裴炎,肖月华.烟草绒毡层特异启动子pTA29在棉花中的表达特性.作物学报,2008,34:2092–2098 YinMH,DongJ,LiXB,HuoL,LuoM,LiDM,PeiY,XiaoYH.Expressioncharacteristicsoftobaccotapetum-specificpromoterpTA29incotton.ActaAgronSin,2008,34:2092–2098(inChinesewithEnglishabstract) [38]BelostotskyDA,MeagherRB.Apollen-,ovule-,andearlyembryo-specificpoly(A)bindingproteinfromArabidopsiscomplementsessentialfunctionsinyeast.PlantCell,1996,8:1261–1275 [39]LuoK,DengW,XuS,PeiY.FunctionalanalysisoftheArabidopsisthalianapoly(A)bindingproteinPAB5genepromoterinNicotianatabacum.PlantCellRep,2008,27:1811–1819

[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!