欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (11): 1620-1628.doi: 10.3724/SP.J.1006.2016.01620

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆四向重组自交系群体蛋白质含量与油分含量QTL定位

宁海龙1,白雪莲1,李文滨1,薛红1,庄煦1,李文霞1,*,刘春燕2   

  1. 1 东北农业大学大豆生物学教育部重点实验室 / 农业部东北大豆生物学与遗传育种重点实验室,黑龙江哈尔滨 150030;2 黑龙江江省计算中心,黑龙江哈尔滨 150028
  • 收稿日期:2016-03-12 修回日期:2016-07-11 出版日期:2016-11-12 网络出版日期:2016-08-11
  • 通讯作者: 李文霞, E-mail: liwenxianeau@126.com
  • 基金资助:

    本研究由?黑龙江省自然科学基金面上项目(C2015007), 黑龙江省省留学归国人员科学基金项目(LC2016010), 黑龙江省教育厅科学技术研究重点项目(12541z001)和黑龙江省博士后科研启动基金(LBH-Q12152, LBH-Q09165)资助。

Mapping QTL Protein and Oil Contents Using Population from Four-way Recombinant Inbred Lines for Soybean (Glycine max L. Merr.)

NING Hai-Long1,BAI Xue-Lian1,LI Wen-Bin1,XUE Hong1,ZHUANG Xu1,LI Wen-Xia1,*,LIU Chun-Yan2   

  1. 1 Key Laboratory of Soybean Biology, Ministry of Education / Key Laboratory of Soybean Biology and Breeding / Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin 150030, China; 2 Heilongjiang Province Compute Center, Harbin 150028, China
  • Received:2016-03-12 Revised:2016-07-11 Published:2016-11-12 Published online:2016-08-11
  • Contact: LI Wenxia, E-mail: liwenxianeau@126.com
  • Supported by:

    This study was supported by Heilongjiang Province Natural Science Foundation Projects (C2015007), Heilongjiang Province Study Abroad Returnees Science Fund Project (LC2016010), Science and Technology Research Key Project of Heilongjiang Province Department of Education (12541z001), and Postdoctoral Research Start Fund in Heilongjiang Province (LBH-Q12152, LBH-Q09165).

摘要:

蛋白质和油分含量是大豆重要的育种目标,蛋白质和油分含量QTL定位和优异等位变异的发掘对大豆分子设计育种具有重要意义。本研究以(垦丰14×垦丰15)×(黑农48×垦丰19)衍生的后代株系为材料,构建含有204个株系的大豆四向重组自交系群体,利用区间作图法,应用前期构建的SSR遗传图谱,对2013、2014和2015年在哈尔滨和克山2地共8个环境下的蛋白质和油分含量进行QTL定位分析。结果表明,8个环境中检测到29个蛋白质含量QTL和39个油分含量QTL。在所定位的蛋白质含量QTL中,有5个能够在2个以上环境被定位到,这些蛋白质含量QTL分布在 A1、D2、J、N和O等6个连锁群上,对表型效应的贡献率为 7.65%~20.08%,其中qPC-A1-1、qPC-D2-1、qPC-J-1和qPC-O-2的贡献率在10%以上。在39个油分含量QTL中,有10个在多环境下被重复检测到,这些QTL分布在8个(A1、A2、B1、D1b、G、I、J、N)连锁群上,对表型效应的贡献率为7.30%~25.68%,其中qOC-A2-1、qOC-B1-1、qOC-G-1和qOC-J-1的贡献率在10%以上。

关键词: 大豆, 蛋白质含量与油分含量, QTL, 四向重组自交系群体, 优异等位基因

Abstract:

Increasing protein content (PC) and oil content (OC) are main goals in soybean improvement, so mapping quantitative trait locus (QTL) and mining elite alleles underlying PC and OC are of importance for molecular design breeding in soybean. In this research a four-way recombinant inbred line population derived from double cross (Kenf 14 × Kenf 15) × (Hein 48 × Kenf 19) with 204 lines was used to analyze the data of PC and OC from the field experiments in eight environments across Harbin and Keshan in 2013, 2014, and 2015 by interval map method based on a linkage map constructed in previous research. The 29 PC QTLs and 39 OC QTLs were detected from eight planting environments. Among the twenty-nine PC QTLs, five were detected across over two environments, which distributed on six linkage groups, i.e. A1, D2, J, N and O, with explained phenotypic variation (PVE) ranging from 7.65% to 20.08%. Four of them, i.e. qPC-A1-1, qPC-D2-1, qPC-J-1, and qPC-O-2, showed PVE over 10%. Of the thirty-nine OC QTLs, ten were found in more than two environments, which were located on linkage groups A1, A2, B1, D1b, G, I, J, and N with PVE ranging from 7.30% to 25.68%. Four out of the ten QTLs that included qOC-A2-1, qOC-B1-1, qOC-G-1, and qOC-J-1 had PVE above 10%.

Key words: Soybean, Protein and oil content, QTL, Four-way recombinant inbred line, Elite allele

[1] Mehrzad E, Elroy R, Istvan R. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents. Theor Appl Genet, 2013, 126: 403–495 [2] Pandurangan S, Pajak A, Molnar S J. Cober Elroy R, Dhaubhadel S, Hernndez-Sebasti Cinta K, Werner M, Nelson Randall L, Huber Steven C, Marsolais F. Relationship between asparagine metabolism and protein concentration in soybean seed. J Exp Bot, 2012, 63: 3173–3184 [3] 葛振宇, 刘晓冰, 刘宝辉, 阿部纯, 马凤鸣, 孔凡江. 大豆种子蛋白质和油分性状的QTL定位. 大豆科学, 2011, 30: 901–905 Ge Z Y, Liu X B, Liu B H, Abe J, Ma F M, Kong F J. QTL mapping of protein and oil content in soybean. Soybean Sci, 2011, 30: 901–905 [4] 林延慧, 张丽娟, 李伟, 张礼凤, 徐冉. 大豆蛋白质含量的QTL定位. 大豆科学, 2010, 29: 207–209 Lin Y H, Zhang L J, Li W, Zhang L F, Xu R. QTLs mapping related to protein content of soybeans. Soybean Sci, 2010, 29: 207–209 [5] Fasoula V, Harris A. Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Sci, 2004, 4: 1218–1225 [6] Lee S H, Bailey M A, M. Mian A R, CarterJr T E, Shipe E R, Ashley D A, Parrott W A, Hussey R S, Boerma H R.. RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor Appl Genet, 1996, 93: 649–657 [7] Panthee D R, Pantalone V R, West D R, Saxton A M, Sans C E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci, 2005, 45: 2015–2022 [8] Maria E R, James O, Liu L J, Dong Z M, Rajcan I. Genetic basis of soybean adaptation to North American vs. Asian mega-environments in two independent populations from Canadian x Chinese crosses. Theor Appl Genet, 2013, 126: 1809–1823 [9] Shen Y R, Liu C Y, Jiang Z F, Wang L L, Ma Z Z, Yang Z, Xin D W, Jiang H W, Hu G H, Chen S H. QTL Analysis of stability for oil content in soybean. Mol Plant Breed, 2014, 12: 251–261 [10] Qi Z M, Wu Q, Han X, Sun Y N, Du X Y, Liu C Y, Jiang H W, Hu G H , Chen Q S. Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica, 2011, 179: 499–514 [11] Li H W, Zhao T J, Wang Y F, Yu D Y, Chen S Y, Zhou R B, Gai J Y. Genetic structure composed of additive QTL, epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans. Euphytica, 2011, 182: 117–132. [12] Moongkanna J, Nakasathien S, Novitzky W. SSR markers linking to seed traits and total oil content in soybean. Thai J Agric Sci, 2011, 44: 233–241 [13] Lu W G, Wen Z X, Li H C, Yuan D H, Li J Y, Zhang H, Huang Z W, Cui S Y, Du W J. Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theor Appl Genet, 2013, 126:425–433 [14] Wang X Z, Jiang G L, Green M, Roy A S, David L, Hyten B. Cregan. Quantitative trait locus analysis of saturated fatty acids in a population of recombinant inbred lines of soybean. Mol Breed, 2012, 30: 1163–1179 [15] Liang H Z, Xu Y L, Yang H Q Zhang H Y, Dong W, Li C Y, Gong P Z, Liu X Y, Fang X J. Epistatic effects and QTL×environment interaction effects of QTLs for yield and agronomic traits in soybean. Acta Agron Sin, 2014, 40: 37–44 [16] Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan D P. QTL analysis of major agronomic traits in soybean. Agric Sci China, 2007, 6: 399–405 [17] Vieira A, Oliveira D, Soares D, Schuster I, Piovesan N, Martinez C A, Barros E G, Moreira M A. Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. J Plant Physiol, 2006, 18: 281–290 [18] Tajuddin, W S, Yamanaka N, Harda K. Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci, 2003, 3: 133–140 [19] Gai J Y, Wang Y J, Wu X L, Chen S Y. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants-with a case in soybean. Front Agric China, 2007, 1: 1–7 [20] Csanadi G, Vollmann J, Stift G, Lelley T. Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet, 2001, 103: 912–919 [21] Qi Z, Han X, Hou M, Xin D, Wang Z, Zhu R, Hu Z, Jiang H, Li C, Liu C, Hu G, Chen Q. QTL analysis of soybean oil content under 17 environments. Can J Plant Sci, 2014, 94: 245–261 [22] Xu S. Mapping quantitative trait loci using four-way crosses. Genet Res, 1996, 68: 175–181 [23] 宁海龙, 李柏云, 何月鹏, 吴昊, 白雪莲, 司敬博, 庄煦, 李文霞. 大豆四向重组自交群体单株产量QTL单标记分析.大豆科学, 2016, 35: 160–164 Ning H L, Li B Y, He Y P, Wu H, Bai X L, Si J B, Zhuang X, Li W X. Single marker analysis on QTL conditioning yield per plant in soybean by four-way recombinant inbred lines population. Soybean Sci, 2016, 35: 160–164 [24] 宁海龙, 吴昊, 李文滨, 薛红, 李柏云, 李琦, 白雪莲, 李文霞. 大豆四向重组自交系群体全生育期QTL的单标记分析. 大豆科学, 2016, 34: 1081–1084 Ning H L, Wu H, Li W B, Xue H, Li B Y, Li Q, Bai X L, Li W X. Single marker analysis on QTLs controlling maturity period in soybean using a four-way recombinant inbred lines population. Soybean Sci, 2016, 34: 1081–1084 [25] 宁海龙, 梁世鑫, 蒋红鑫, 李文霞, 薛红, 李琦, 吴昊, 李文滨, 王德亮. 应用极大似然法分析大豆四向重组自交系群体株高与主茎节数的主基因遗传效应. 大豆科学, 2013, 32: 438–444 Ning H L, Liang S X, Jiang H X, Li W X, Xue H, Li Q, Wu H, Li W B, Wang D L. Genetic effects analysis of major genes underlying plant height and main stem nodes in a soybean four- way recombinant inbred lines population through maximum likelihood method. Soybean Sci, 2013, 32: 438–444 [26] 宁海龙, 李琦, 李文滨, 薛红, 李柏云, 白雪莲, 庄煦, 李文霞. 大豆四向重组自交系群体遗传图谱的构建. 大豆科学, 2015, 34: 776–781 Ning H L, Li Q, Li W B, Xue H, Li B Y, Bai X L, Zhuang X, Li W X. Construction of linkage map based on a four-way recombinant inbred lines population. Soybean Sci, 2015, 34: 776–781 [27] Cregan P B, Jarvik T, Bush A L, Lark G K. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464–1490 [28] Tong C F, Zhang B, Shi J S. A hidden Markov model approach to multilocus linkage analysis in a full-sib family. Tree Genet Genom, 2010, 6: 651–662 [29] Jiang B B, Yu S Z, Xiao B G, Lou X Y, Xu H M. Constructing linkage map based on a four-way cross population. J Zhejiang Univ (Agric & Life Sci), 2014, 40: 387–396 [30] Song Q J, Marek? L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128 [31] Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336 [32] Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651 [33] Panthee D, Pantalone V, Saxton A, West D, Sams C. Genomic regions associated with amino acid composition in soybean. Mol Breed, 2006, 17: 79–89 [34] Reinprecht Y, Poysa V, Yu K, Rajcan I., Ablett G., Pauls K. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max L. Merrill) germplasm. Genome, 2006, 49: 1510–1527 [35] Qi Z, Wu Q, Han X, Sun Y, Du X, Liu C, Jiang H, Hu G, Chen Q. Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica, 2011, 179: 499–514 [36] Brummer E C, Graef G L, Orf J H, Wilcox J R, Shoemaker R C. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci, 1997, 37: 370–378 [37] Kim H, Kim Y, Kim S, Son B, Choi Y, Kang J, Park Y, Cho Y, Choi I. Analysis of quantitative trait loci (QTLs) for seed size and fatty acid composition using recombinant inbred lines in soybean. J Life Sci, 2010, 20: 1186–1192 [38] Diers BW, Keim P, Shoemaker R C, Fehr W R. RFLP analysis of soybean seed protein and oil content. Theor Appl Genet, 1992, 83: 608–612 [39] Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci, 2000, 40: 1438–1444 [40] Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: A QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509 [41] Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053–1067 [42] Shibata M, Takayama K, Ujiie A, Yamada T, Abe J, Kitamura K. Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breed Sci, 2008, 58: 361–366 [43] Palomeque L, Li-Jun L, Li W, Hedges B, Cober E, Rajcan I. QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines. Theor Appl Genet, 2009, 119: 429–436 [44] Tajuddin T, Watanabe S, Yamanaka N, Harada K. Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci, 2003, 53: 133–140 [45] Bachlava E, Dewey R, Burton J, Cardinal A. Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci, 2009, 49: 433–442 [46] Rossi M, Orf J, Liu L, Dong Z, Rajcan I. Genetic basis of soybean adaptation to North American vs. Asian mega-environments in two independent populations from Canadian × Chinese crosses. Theor Appl Genet, 2013, 126: 1809–1823 [47] Panthee D, Pantalone V, Saxton A. Modifier QTL for fatty acid composition in soybean oil. Euphytica, 2006, 152: 67–73

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!