[1] Sedbrook J C. MAPs in plant cells: delineating microtubule growth dynamics and organization. Curr Opin Plant Boil, 2004, 7: 632–640
[2] Hamada T. Microtubule-associated proteins in higher plants. J Plant Res, 2007, 120: 79–98
[3] Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cel Mol Biol, 2014, 312:1–52
[4] Tian J, Han L B, Feng Z D, Wang G D, Liu W W, Ma Y P, Yu Y J, Kong Z S. Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. eLife, 2015, 4: e09351
[5] Kong Z S, Ioki M, Braybrook S, Li S D, Ye Z H, Lee Y R J, Hotta T, Chang A, Tian J, Wang G D, Liu B. Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol Plant, 2015, 8: 1011–1023
[6] Akhmanova A, Hoogenraad C C, Drabek K, Stepanova T, Dortland B, Verkerk T, Vermeulen W, Burgering B M, Zeeuw C I D, Grosveld F, Galjart N. CLASPs are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell, 2001, 104: 923–935
[7] Ambrose J C, Shoji T, Kotzer A M, Pighin J A, Wasteneys G O. The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell, 2007, 19: 2763–2775
[8] Kirik V, Herrmann U, Parupalli C, Sedbrook J C, Ehrhardt D W, Hülskamp M. CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis. J Cell Sci, 2007, 120: 4416–4425
[9] Ambrose C, Allard J F, Cytrynbaum E N. A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat Commun, 2011, 2: 430
[10] Ambrose C, Ruan Y, Gardiner J. CLASP interacts with sorting Nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev Cell, 2013, 24: 649–659
[11] Gardiner J. The evolution and diversification of plant microtubule-associated proteins. Plant J, 2013, 75: 219–229
[12] Pietra S, Gustavsson A, Kiefer C, Kalmbach L, Horstedt P, Ikeda Y, Stepanova A N, Alonso J M, Grebe M. Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. Nat Commun, 2013, 4: 2779
[13] Carvalho P, Tirnauer J S, Pellman D. Surfing on microtubule ends. Trends Cell Biol, 2003, 13: 229–237
[14] Mimori-Kiyosue Y, Tsukita S. “Search-and-capture” of microtubules through plus-end-binding proteins (+TIPs). J Biochem, 2003, 134: 321–326
[15] Akhmanova A, Hoogenraad C C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr Opin Cell Biol, 2005, 17: 47–54
[16] Inoue Y H, Avides M C, Shiraki M, Deak P, Yamaguchi M, Nishimoto Y, Matsukage A. Glover D M. Orbit, a novel microtubule-associated protein essential for mitosis in Drosophila melanogaster. J Cell Biol, 2000, 149: 153–166
[17] Lemos C L, Sampaio P, Maiato H, Costa M, Omelyanchuk L V, Liberal V, Sunkel C E. Mast, a conserved microtubule associated protein required for bipolar mitotic spindle organization. EMBO J, 2000, 19: 3668–3682
[18] Dhonukshe P, Weits D A, Cruz-Ramirez A, Deinum E E, Tindemans S H, Kakar K, Prasad K, Maehoenen A P, Ambrose C, Sasabe M, Wachsmann G, Luijten M, Bennett T, Machida Y, Heidstra R, Wasteneys G, Mulder B M, Scheres B. A PLETHOR-auxin transcription module controls cell division plane rotation through MAP65 and CLASP. Cell, 2012, 149: 383–396
[19] Ambrose J C, Wasteneys G O. CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell, 2008, 19: 4730–4737
[20] Jawdat A B, Fred C. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Trends Cell Biol, 2011, 21: 604–614
[21] Maiato H, Khodjakov A, Rieder C L. Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nat Cell Biol, 2004, 7: 42–47
[22] Wittman T, Waterman-storer C M. Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3 beta in migrating epithelial cells. J Cell Biol, 2005, 169: 929–939
[23] 朱守鸿, 薛飞, 赵兰杰, 刘永昌, 李艳军, 熊显鹏, 孙杰. 棉花微管结合蛋白基因GhCLASP1的克隆与表达分析. 西北植物学报, 2015, 35: 1941–1948
Zhu S H, Xue F, Zhao L J, Liu Y C, Li Y J, Xiong X P, Sun J. Cloning and expression analysis of GhCLASP1 gene in Gossypium hirsutum L.. Acta Bot Bor-Occid Sin, 2015, 35: 1941–1948 (in Chinese with English abstract)
[24] Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G , Zhang X, Zhu S , Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu J Z, Zhu Y, Yu S. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015, 33: 524–530
[25] Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531–537
[26] 蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA. 棉花学报, 2003, 15: 166–167
Jiang J X, Zhang T Z. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cott Sci, 2003, 15: 166–167 (in Chinese with English abstract)
[27] Andrade M A, Bork P. HEAT repeats in the Huntington's disease protein. Nat Genet, 1995, 11: 115–116
[28] Groves M R, Hanlon N, Turowski P, Hemmings B A, Barford D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Can Metall Q, 1999, 96: 99–110
[29] Grallert A, Beuter C, Craven R A, Wilks D, Grallert A, Fleig U, Beuter C, Hagan L M. S.pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. Genes Dev, 2006, 20: 2421–2436
[30] Pereira A L, Pereira A J, Maia A R, Drabek K, Sayas C L, Hergert P J, Faria M L, Matos I, Duque C, Stepanova T, Rieder C L, Earnshaw W C, Galjart N, Maiato H, Bloom K. Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function. Mol Biol Cell, 2006, 17: 4526–4542
[31] Brandizzi F, Wasteneys G O. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. Plant J, 2013, 75: 339–349
[32] Kakar K, ZHANG H T, Scheres B, Dhonukshe P. CLASP-mediated cortical microtubule organization guides PIN polarization axis. Nature, 2013, 495: 529–533
[33] Zhang C, Raikhel N V, Hicks G R. CLASPing microtubules and auxin transport. Dev Cell, 2013, 24: 569–571
[34] Basra A S, Malik C P. Development of the cotton fiber. Int Rev Cytol, 1984, 89: 65–113
[35] Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361–1366
[36] Yatsu L Y, Jacks T J. An ultrastructural study of the relationship between microtubules and microfibrils in cotton (Gossypium hirsutum L.) cell wall reversals. Am J Bot, 1981: 771–777
[37] Dixit R, Cyr R. Encounters between dynamic cortical microtubules promoter ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell, 2004, 16: 3274–3284
[38] Dixit R, Cyr R. The cortical microtubule array: from dynamics to organization. Plant Cell, 2004, 16: 2546–2552
[39] Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N. KIF1B, novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell, 1994, 79: 1209–1220
[40] Yaffe M P, Stuurman N, Vale R D. Mitochondrial positioning in fission yeast is driven by association with dynamic microtubules and mitotic spindle poles. Proc Natl Acad Sci, 2003, 100: 11424–11428 |