欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (03): 389-398.doi: 10.3724/SP.J.1006.2017.00389

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉微管结合蛋白CLASP家族基因的鉴定及表达分析

朱守鸿,赵兰杰,刘永昌,李艳军,张新宇,孙杰   

  1. 石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子 832003
  • 收稿日期:2016-04-04 修回日期:2016-09-18 出版日期:2017-03-12 网络出版日期:2016-10-09
  • 通讯作者: 刘永昌, E-mail: liuyongchang2003@126.com, Tel: 18799292449
  • 基金资助:

    本研究由国家自然科学基金项目(U1128301),新疆生产建设兵团博士资金专项(2013BB003)和石河子大学高层次人才启动项目(RCZX201218)资助。

Identification and Expression Analysis of Microtubule Binding Protein CLASP Family Genes in Gossypium hirsutum L.

ZHU Shou-Hong,ZHAO Lan-Jie,LIU Yong-Chang*,LI Yan-Jun,ZHANG Xin-Yu,SUN Jie   

  1. College of Agronomy, Shihezi University / Key Oasis Eco-agriculture Laboratory of Production and Construction Group, Shihezi 832003, China
  • Received:2016-04-04 Revised:2016-09-18 Published:2017-03-12 Published online:2016-10-09
  • Contact: 刘永昌, E-mail: liuyongchang2003@126.com, Tel: 18799292449
  • Supported by:

    This study was support by the National Natural Science Foundation (U1128301), the Doctor Funds of Xinjiang Crops (2013BB003), and the Startup Project of Advanced Talents of Shihezi University (RCZX201218).

摘要:

CLASP蛋白(CLIP-associated proteinsCLASPs)是一种调节微管结构与功能的微管结合蛋白,在植物生长发育及形态建成过程中起着至关重要的作用。本研究利用生物信息学的方法,在陆地棉基因组数据库中鉴定出6个编码CLASP蛋白的基因。多重序列比对及系统进化树分析表明,陆地棉CLASP基因家族可分为2个亚家族(III),亚家族I含有HEAT重复结构域和典型的CLASP-N端结构域,亚家族II只含有CLASP-N端结构域。实时荧光定量PCR结果表明,6CLASP家族基因在棉花各组织中均有表达,但表达模式各不相同,其中CotAD_63740 (GenBank登录号为KX881965)CotAD_04861 (GenBank登录号为KX881961)在纤维中优势表达,CotAD_48232 (GenBank登录号为KX881962)CotAD_48665 (GenBank登录号为KX881963)CotAD_55570 (GenBank登录号为KX881964)CotAD_68468 (GenBank登录号为KX881966)在茎中优势表达,表达模式的不同表明CLASP家族基因在棉花不同组织中功能不同。本研究为深入研究棉花CLASP家族基因的功能奠定了基础

关键词: 陆地棉, 微管结合蛋白, 微管, 表达分析

Abstract:

CLIP-Associated Proteins (CLASPs) are microtubule associated proteins (MAPS) which are regulators of microtubule structure and function, and play a key role in plant growth and morphogenesis. In this study, six CLASP genes were preliminarily identified in Gossypium hirsutum L. by bioinformatics. Based on multiple sequence alignment and phylogenetic tree analysis, we divided the six CLASP genes into I and II subfamilies. The subfamily I has HEAT domain and CLASP-N structure; and the subfamily II only has CLASP-N structure. Real-time quantitative reverse transcription PCR (qRT-PCR) revealed that GhCLASP family genes expressed in root, stem, leaf, petal and fiber at different developmental periods,and there existed different expression patterns. CotAD_63740 (GenBank accession No. KX881965) and CotAD_04861 (GenBank accession No. KX881961) were preferentially expressed in fiber; CotAD_48232 (GenBank accession No. KX881962), CotAD_48665 (GenBank accession No. KX881963), CotAD_55570 (GenBank accession No. KX881964), and CotAD_68468 (GenBank accession No. KX881966) were preferentially expressed in stem. Different expression patterns suggest that they may play different roles during cotton development. The results will be helpful for the further analysis of CLASP family proteins in cotton.

Key words: Gossypium hirsutum L, Microtubule binding protein, Microtubule, Expression analysis

[1] Sedbrook J C. MAPs in plant cells: delineating microtubule growth dynamics and organization. Curr Opin Plant Boil, 2004, 7: 632–640
[2] Hamada T. Microtubule-associated proteins in higher plants. J Plant Res, 2007, 120: 79–98
[3] Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cel Mol Biol, 2014, 312:1–52
[4] Tian J, Han L B, Feng Z D, Wang G D, Liu W W, Ma Y P, Yu Y J, Kong Z S. Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. eLife, 2015, 4: e09351
[5] Kong Z S, Ioki M, Braybrook S, Li S D, Ye Z H, Lee Y R J, Hotta T, Chang A, Tian J, Wang G D, Liu B. Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol Plant, 2015, 8: 1011–1023
[6] Akhmanova A, Hoogenraad C C, Drabek K, Stepanova T, Dortland B, Verkerk T, Vermeulen W, Burgering B M, Zeeuw C I D, Grosveld F, Galjart N. CLASPs are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell, 2001, 104: 923–935
[7] Ambrose J C, Shoji T, Kotzer A M, Pighin J A, Wasteneys G O. The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell, 2007, 19: 2763–2775
[8] Kirik V, Herrmann U, Parupalli C, Sedbrook J C, Ehrhardt D W, Hülskamp M. CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis. J Cell Sci, 2007, 120: 4416–4425
[9] Ambrose C, Allard J F, Cytrynbaum E N. A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat Commun, 2011, 2: 430
[10] Ambrose C, Ruan Y, Gardiner J. CLASP interacts with sorting Nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev Cell, 2013, 24: 649–659
[11] Gardiner J. The evolution and diversification of plant microtubule-associated proteins. Plant J, 2013, 75: 219–229
[12] Pietra S, Gustavsson A, Kiefer C, Kalmbach L, Horstedt P, Ikeda Y, Stepanova A N, Alonso J M, Grebe M. Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. Nat Commun, 2013, 4: 2779
[13] Carvalho P, Tirnauer J S, Pellman D. Surfing on microtubule ends. Trends Cell Biol, 2003, 13: 229–237
[14] Mimori-Kiyosue Y, Tsukita S. “Search-and-capture” of microtubules through plus-end-binding proteins (+TIPs). J Biochem, 2003, 134: 321–326
[15] Akhmanova A, Hoogenraad C C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr Opin Cell Biol, 2005, 17: 47–54
[16] Inoue Y H, Avides M C, Shiraki M, Deak P, Yamaguchi M, Nishimoto Y, Matsukage A. Glover D M. Orbit, a novel microtubule-associated protein essential for mitosis in Drosophila melanogaster. J Cell Biol, 2000, 149: 153–166
[17] Lemos C L, Sampaio P, Maiato H, Costa M, Omelyanchuk L V, Liberal V, Sunkel C E. Mast, a conserved microtubule associated protein required for bipolar mitotic spindle organization. EMBO J, 2000, 19: 3668–3682
[18] Dhonukshe P, Weits D A, Cruz-Ramirez A, Deinum E E, Tindemans S H, Kakar K, Prasad K, Maehoenen A P, Ambrose C, Sasabe M, Wachsmann G, Luijten M, Bennett T, Machida Y, Heidstra R, Wasteneys G, Mulder B M, Scheres B. A PLETHOR-auxin transcription module controls cell division plane rotation through MAP65 and CLASP. Cell, 2012, 149: 383–396
[19] Ambrose J C, Wasteneys G O. CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell, 2008, 19: 4730–4737
[20] Jawdat A B, Fred C. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Trends Cell Biol, 2011, 21: 604–614
[21] Maiato H, Khodjakov A, Rieder C L. Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nat Cell Biol, 2004, 7: 42–47
[22] Wittman T, Waterman-storer C M. Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3 beta in migrating epithelial cells. J Cell Biol, 2005, 169: 929–939
[23] 朱守鸿, 薛飞, 赵兰杰, 刘永昌, 李艳军, 熊显鹏, 孙杰. 棉花微管结合蛋白基因GhCLASP1的克隆与表达分析. 西北植物学报, 2015, 35: 1941–1948
Zhu S H, Xue F, Zhao L J, Liu Y C, Li Y J, Xiong X P, Sun J. Cloning and expression analysis of GhCLASP1 gene in Gossypium hirsutum L.. Acta Bot Bor-Occid Sin, 2015, 35: 1941–1948 (in Chinese with English abstract)
[24] Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G , Zhang X, Zhu S , Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu J Z, Zhu Y, Yu S. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015, 33: 524–530
[25] Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531–537
[26] 蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA. 棉花学报, 2003, 15: 166–167
Jiang J X, Zhang T Z. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cott Sci, 2003, 15: 166–167 (in Chinese with English abstract)
[27] Andrade M A, Bork P. HEAT repeats in the Huntington's disease protein. Nat Genet, 1995, 11: 115–116
[28] Groves M R, Hanlon N, Turowski P, Hemmings B A, Barford D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Can Metall Q, 1999, 96: 99–110
[29] Grallert A, Beuter C, Craven R A, Wilks D, Grallert A, Fleig U, Beuter C, Hagan L M. S.pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. Genes Dev, 2006, 20: 2421–2436
[30] Pereira A L, Pereira A J, Maia A R, Drabek K, Sayas C L, Hergert P J, Faria M L, Matos I, Duque C, Stepanova T, Rieder C L, Earnshaw W C, Galjart N, Maiato H, Bloom K. Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function. Mol Biol Cell, 2006, 17: 4526–4542
[31] Brandizzi F, Wasteneys G O. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. Plant J, 2013, 75: 339–349
[32] Kakar K, ZHANG H T, Scheres B, Dhonukshe P. CLASP-mediated cortical microtubule organization guides PIN polarization axis. Nature, 2013, 495: 529–533
[33] Zhang C, Raikhel N V, Hicks G R. CLASPing microtubules and auxin transport. Dev Cell, 2013, 24: 569–571
[34] Basra A S, Malik C P. Development of the cotton fiber. Int Rev Cytol, 1984, 89: 65–113
[35] Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361–1366
[36] Yatsu L Y, Jacks T J. An ultrastructural study of the relationship between microtubules and microfibrils in cotton (Gossypium hirsutum L.) cell wall reversals. Am J Bot, 1981: 771–777
[37] Dixit R, Cyr R. Encounters between dynamic cortical microtubules promoter ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell, 2004, 16: 3274–3284
[38] Dixit R, Cyr R. The cortical microtubule array: from dynamics to organization. Plant Cell, 2004, 16: 2546–2552
[39] Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N. KIF1B, novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell, 1994, 79: 1209–1220
[40] Yaffe M P, Stuurman N, Vale R D. Mitochondrial positioning in fission yeast is driven by association with dynamic microtubules and mitotic spindle poles. Proc Natl Acad Sci, 2003, 100: 11424–11428

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[5] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[6] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[7] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[8] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[9] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[10] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[11] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[12] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[13] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[14] 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032.
[15] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!