欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (03): 399-406.doi: 10.3724/SP.J.1006.2017.00399

• 耕作栽培·生理生化 • 上一篇    下一篇

基于生物量的冬小麦穗部主要形态参数模型

陈昱利1,杨平1,张文宇2,张伟欣2,诸叶平3,李世娟3,巩法江1,毕海滨1,岳霆1,曹宏鑫2,*   

  1. 1淄博市农业科学研究院,山东淄博 255033;2江苏省农业科学院农业经济与信息研究所数字农业工程技术研究中心,江苏南京 210014; 3中国农业科学院农业信息研究所, 北京 100081
  • 收稿日期:2016-06-19 修回日期:2016-11-02 出版日期:2017-03-12 网络出版日期:2016-11-18
  • 通讯作者: 曹宏鑫, E-mail: caohongxin@hotmail.com
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2013AA102305-1)资助。

Biomass-Based Main Spike MorphologicalParameter Model for Winter Wheat

CHEN Yu-Li1,YANG Ping1,ZHANG Wen-Yu2,ZHANG Wei-Xin2,ZHUYe-Ping3,LI Shi-Juan3,GONG Fa-Jiang1,BI Hai-Bin1,YUE Ting1,CAO Hong-Xin2,*   

  1. 1Zibo Academy of Agricultural Sciences, Zibo 255033, China; 2 InformationEngineering Research Center for Digital Agriculture, Institute of Agricultural Economy, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 3 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2016-06-19 Revised:2016-11-02 Published:2017-03-12 Published online:2016-11-18
  • Contact: 曹宏鑫, E-mail: caohongxin@hotmail.com
  • Supported by:

    This study was supported by the National High Technology Research and Development Program of China (2013AA102305-1)

摘要:

冬小麦穗部形态结构模型是功能–结构小麦模型的重要研究内容。以济麦22、泰农18和鲁原502为材料, 于2013—2014和2014—2015年度开展了品种和施氮试验。结合2013—2014年数据, 分析穗部主要形态参数与器官生物量的定量关系及形态参数间的内在联系, 构建了冬小麦穗部主要形态结构模型。经2014—2015年小麦生长数据检验, 除穗长模型精度略低外, 穗宽、穗厚、颖壳长、颖壳宽、颖壳厚、籽粒长、籽粒宽和籽粒厚模型精度均较高, 所建模型可较好模拟不同品种与施氮水平冬小麦穗部主要形态结构。

关键词: 冬小麦, 形态结构, 生物量, 穗, 模型

Abstract:

Spike morphological structure modelis an important basis for the function and structure model in winterwheat. We carried out a field experimentin the 2013–2014 and 2014–2015 growing reasonsusing winter wheat varieties Jimai 22, Tainong 18, and Luyuan 502under different nitrogen application levels. The morphological-structure models of wheat spikewere built through dissecting the quantitativerelationship between spike morphological-structure parameters and organ biomass, as well as the internal connections of morphological-structure parameters. These models were then validated with anindependent dataset collected in the 2014–2015 growing season.Except forspike length,all the models of spike width, spike thickness, glume length, glume width, glume thickness, grain length, grain width, and grain thicknesshad higher accuracy. These models can be used to simulate spike structure in diverse varieties under different nitrogenapplication levels.

Key words: Winter wheat, Morphological structure, Biomass, Spike, Model

[1]曹宏鑫, 赵锁劳, 葛道阔, 刘永霞, 刘岩, 孙金英, 岳延滨, 张智优,陈煜利.作物模型发展探讨. 中国农业科学, 2011, 44: 3520–3528
Cao H X, Zhao S L, Ge D K, Liu Y X, Liu Y, Sun J Y, Yue Y B, Zhang Z Y, Chen Y L. Discussion on development of crop models. SciAgricSin, 2011,44:3520–3528(in Chinese with English abstract)
[2]Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Vakev A J. Lignum: a tree model based oil simple structural units. Ann Bot, 1996, 77: 87–98
[3]Perttunen J, Sievänen R, Nikinmaa E. Lignum: a model combining the structure and the functioning of trees. Ecol Model, 1998, 108: 189–198
[4]Perttunen J, Nikinmaa E, Martin J, Lechowicz, Sievänen R, Messier C. Application of the functional-structural tree model Lignum to sugarmaple saplings (Acer saccharum Marsh) vowing in forest gaps. Ann Bot, 2001, 88: 471–481
[5]Cieslak M, Seleznyova A N, Hanan J. A functional-structural kiwifruit vine model integrating architecture, carbon dynamics and effects of the environment. Ann Bot, 2010, 107: 747–764
[6]Hanan J S, Hearn A B. Linking physiological and architectural models of cotton. Agric Syst, 2003, 75: 47–77
[7]Watanabe T, Hanan J S, Room P M, Hasegawa T, Nakagawa H, Takahashi W. Rice morphogenesis and plant architecture: measurement, specification and the reconstruction of structural development by 3D architectural modelling. Ann Bot, 2005, 95: 1131–1143
[8]Yan H P, Kang M Z, de Reffye P, Dingkuhn M. A dynamic architectural plant model simulating resource-dependent growth. Ann Bot, 2004, 93: 591–602
[9]Cao H X, Liu Y, Liu Y X, Hanan J. S., Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Biomass-based rice (Oryza sativa L.) aboveground architectural parameter models. J Integr Agric, 2012, 11: 1621–1632
[10]刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究. 中国农业科学, 2009, 42: 4093–4099
Liu Y, Lu J F, Cao H X, Shi C L, Liu Y X, Zhu D W, Sun J Y, Yue Y B, Wei X F, Tian P P, Bao T L. Main geometrical parameter models of rice blade basedon biomass. SciAgricSin, 2009,42:4093–4099(in Chinese with English abstract)
[11]Risto S. Looking back: ten years of FSPM, 2007. http://algorithmicbotany.org/FSPM07/proceedings.html
[12]张文宇, 汤亮, 朱相成, 杨月, 曹卫星, 朱艳. 基于过程的小麦茎鞘夹角动态模拟. 应用生态学报, 2011, 22: 1765–1770
Zhang W Y, Tang L, Zhu X C, Yang Y, Cao W X, Zhu Y. Dynamic simulation of wheat stem-sheath angle based on process.Chin JApplEcol, 2011, 22: 1765–1770(in Chinesewith English abstract)
[13]陈昱利, 杨平, 张文宇, 张伟欣, 诸叶平, 李世娟, 巩法江, 毕海滨, 岳霆, 曹宏鑫. 越冬前冬小麦主茎叶片几何参数模型研究. 麦类作物学报, 2015, 35: 1719–1726
Chen Y L, Yang P, Zhang W Y, Zhang W X, Zhu Y P, Li S J, Gong F J, Bi H B, Yue T, Cao H X. Study on main geometrical parameter models of leaf blade at pre-overwintering of winter wheat. J Triticeae Crops, 2015, 35: 1719–1726 (in Chinese with English abstract)
[14]张伟欣, 曹宏鑫, 朱艳, 刘岩, 张文宇, 陈昱利, 傅坤亚. 基于生物量的油菜越冬前植株叶片空间形态结构模型. 作物学报, 2015, 41: 318–328
Zhang W X, Cao H X, Zhu Y, Liu Y, Zhang W Y, Chen Y L, Fu K Y. Morphological structure model of leaf space based on biomass at pre-overwintering stage in rapeseed (Brassica napus L.) plant. ActaAgron Sin, 2015, 41: 318–328(in Chinese with English abstract)
[15]陈国庆, 朱艳, 曹卫星. 小麦叶鞘和节间生长过程的模拟研究. 麦类作物学报, 2005, 25(1): 71–74
Chen G Q, Zhu Y, Cao W X. Modeling leaf sheath and internode growth dynamics in wheat. J Triticeae Crops, 2005, 25(1): 71–74 (in Chinese with English abstract)
[16]谭子辉, 朱艳, 姚霞, 田永超, 刘小军, 曹卫星. 冬小麦麦穗生长过程的模拟研究. 麦类作物学报, 2006, 26(4): 93–97
Tan Z H, Zhu Y, Yao X, Tian Y C, Liu X J, Cao W X. Modeling spike growth dynamics in winter wheat. J Triticeae Crops,2006, 26(4): 93–97(in Chinese with English abstract)
[17]聂志刚, 李广. 基于APSIM模型的可视化小麦生长系统分析. 草业科学, 2013, 30: 795–598
Nie Z G, Li G. Analysis of APSIM-based visual growth system in wheat. PratacultSci, 2013, 30: 795–598(in Chinese with English abstract)
[18]伍燕莲, 曹卫星, 汤亮, 朱艳, 刘慧. 基于OpenGL的小麦形态可视化技术. 农业工程学报, 2009, 25(1): 121–126
Wu Y L, Cao W X, Tang L, Zhu Y, Liu H. OpenGL-based visual technology for wheat morphology. TransCSAE,2009, 25(1): 121–126 (in Chinese with English abstract)
[19]雷晓俊, 汤亮, 张永会, 姜海燕, 曹卫星, 朱艳. 小麦麦穗几何模型构建与可视化. 农业工程学报, 2011, 27(3): 179–184
Lei X J, Tang L, Zhang Y H, Jiang H Y, Cao W X, Zhu Y. Geometric model and visualization of wheat spike.TransCSAE,2011, 27(3): 179–184 (in Chinese with English abstract)
[20]孟军, 郭新宇, 赵春江. 小麦地上部器官几何造型与可视化研究. 麦类作物学报, 2009, 29: 106–109
Meng J, Guo X Y, Zhao C J. Geometry modeling and visualization of above-ground organs of wheat. J Triticeae Crops,2009, 29: 106–109 (in Chinese with English abstract)
[21]陈国庆, 朱艳, 刘慧, 曹卫星. 基于形态模型的小麦器官和单株虚拟生长系统研究. 农业工程学报, 2007, 23(3): 126–130
Chen G Q, Zhu Y, Liu H, Cao W X. Morphogenesis model-based virtual growth system for organs and plant of wheat. TransCSAE, 2007, 23(3): 126–130 (in Chinese with English abstract)
[22]MabilleF, Abecassis J. Parametric modeling of wheat grain morphology: a new perspective. J Cereal Sci, 2003, 37, 43–53
[23]刘铁梅, 曹卫星, 罗卫红, 王绍华, 郭文善, 邹薇, 周琴. 小麦器官间干物质分配动态的定量模拟. 麦类作物学报, 2001, (1): 25–31
Liu T M, Cao W X, Luo W H, Wang S H, Guo W S, Zou W, Zhou Q. Quantitative simulation on dry matter partitioning dynamic in wheat organs.J Triticeae Crops,2001, (1): 25–31 (in Chinese with English abstract)
[24]Asseng S, Bar-Tal A, Bowden J W, Keating B A, Van Hewraarden A, Palat J A, Hhut NI, ProbertME. Simulation of grain protein content with APSIM-N wheat. Eur J Agron, 2002, 16: 25–42
[25]田梦雨, 李丹丹, 戴廷波, 姜东, 荆奇, 曹卫星. 水分胁迫下不同基因型小麦苗期的形态生理差异. 应用生态学报, 2010, 21: 41–47
TianMY, Li DD, Dai TB, Jiang D, Jing Q, Cao W X. Morphological and physiological differences of wheat genotypes at seedling stage under water stress. Chin J Appl Ecol, 2010, 21: 41–47(in Chinese with English abstract)
[26]李存东, 曹卫星, 戴廷波, 严美春. 小麦不同品种和播期对发育阶段的效应. 应用生态学报, 2001, 12: 218–222
Li CD, Cao WX, Dai TB, Yan M C. Effects of different varieties and sowingdates on development stages of wheat.Chin J Appl Ecol, 2001, 12: 218–222(in Chinese with English abstract)
[27]张定一, 张永清, 闫翠萍, 裴雪霞. 基因型、播期和密度对不同成穗型小麦籽粒产量和灌浆特性的影响. 应用与环境生物学报, 2009, 15(1): 28–34
Zhang D Y, Zhang Y Q, Yan C P, Pei X X. Effects of genotype, sowing date and planting density on grain filling and yield of wheat varieties with different ears forming characteristics.Chin J Appl Environ Biol, 2009, 15(1): 28–34 (in Chinese with English abstract)
[28]李宁, 段留生, 李建民, 翟志席, 李召虎. 播期与密度组合对不同穗型小麦品种花后旗叶光合特性、籽粒库容能力及产量的影响. 麦类作物学报, 2010,30:296–302
Li N, Duan L S, Li J M, Zhai Z X, Li Z H. Effect of sowing date and planting density on flag leaf photosynthesis, storage capacity after anthesis and yield in different spike type cultivars, J Triticeae Crops, 2010, 30: 296–302 (in Chinese with English abstract)
[29]河南省小麦高稳优低研究推广协作组. 小麦生态与生产技术. 郑州: 河南科技出版社, 1986. pp 150–164
The Collaboration Groupfor High-Yield, Stable-Yield, High-Quality and High-Efficient Wheat Production. Wheat Ecology and Production Technologies. Zhengzhou: Henan Scientific and Technical Publishers, 1986. pp 150–164(in Chinese)
[30]马溶慧, 朱云集, 郭天财, 闫耀礼, 刘万代. 国麦1号播期播量对群体发育及产量的影响. 山东农业科学, 2004, (4): 12–15
Ma R H, Zhu Y J, Guo T C, Yan Y L, Liu W D. Effects of planting date and seed rate in group development and yield of Guomai 1. Shandong AgricSci,2004, (4): 12–15 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[3] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[4] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[5] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[6] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[7] 秦琴, 陶有凤, 黄帮超, 李卉, 高云天, 钟晓媛, 周中林, 朱莉, 雷小龙, 冯生强, 王旭, 任万军. 杂交水稻机插制种的亲本穗茎生长与花期特性[J]. 作物学报, 2022, 48(4): 988-1004.
[8] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[11] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[12] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[13] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[14] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[15] 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!