欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (03): 407-419.doi: 10.3724/SP.J.1006.2017.00407

• 耕作栽培·生理生化 • 上一篇    下一篇

氮肥后移对不同氮效率水稻花后碳氮代谢的影响

孙永健1,孙园园2,严奉君1,杨志远1,徐徽1,李玥1,王海月1,马均1,*   

  1. 1四川农业大学水稻研究所 / 农业部西南作物生理生态与耕作重点实验室,四川温江 611130;2中国气象局成都高原气象研究所,四川成都 610072
  • 收稿日期:2016-08-03 修回日期:2016-11-01 出版日期:2017-03-12 网络出版日期:2016-12-02
  • 通讯作者: 马均, E-mail: majunp2002@163.com
  • 基金资助:

    本研究由国家重点研发计划“粮食丰产增效科技创新”重点专项(2016YFD0300506), 四川省教育厅重点项目(16ZA0044), 农业部作物生理生态与耕作重点实验室开放课题(201303), 国家科技支撑计划项目(2013BAD07B13)和四川省育种攻关专项(2016NYZ0051)资助。

Effects of Postponing Nitrogen Topdressing on Post-anthesis Carbon and Nitrogen Metabolism in Rice Cultivars with Different Nitrogen Use Efficiencies

SUN Yong-Jian1,SUN Yuan-Yuan2,YAN Feng-Jun1,YANG Zhi-Yuan1,XU Hui1,LI Yue1,WANG Hai-Yue1,MA Jun1,*   

  1. 1 Rice Research Institute of Sichuan Agricultural University / Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest, Ministry of Agriculture, Wenjiang 611130, China; 2 Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, China
  • Received:2016-08-03 Revised:2016-11-01 Published:2017-03-12 Published online:2016-12-02
  • Contact: 马均, E-mail: majunp2002@163.com
  • Supported by:

    This study was supported by National key research and development program of China (2016YFD0300506), Scientific Research Fund of Sichuan Provincial Education Department (16ZA0044), Open Project of Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest, Chinese Ministry of Agriculture (201303), the National Science and Technology Project of Food Production of China (2013BAD07B13) and the Rice Breeding Project in Sichuan Province of China (2016NYZ0051).

摘要:

以氮高效品种(德香4103)和氮低效品种(宜香3724)为材料,利用13C和15N双同位素示踪技术和生理生化分析方法,采用盆栽及大田试验,在施氮量180 kg hm-2条件下,设置3种氮肥运筹方式,基肥∶蘖肥∶穗肥比例分别为5∶3∶2(N1)、3∶3∶4(N2)、3∶1∶6(N3),以及不施氮(N0)处理;研究其对不同氮效率水稻花后氮碳代谢的影响,并探讨氮肥后移下花后光合同化物及氮素累积、转运、分配的共性响应机制及其与产量的关系。结果表明,品种、氮肥运筹对花后氮素利用特征、光合同化物分配、生理特性及产量均存在显著影响。氮高效品种与氮肥后移量占总施氮量的40%、氮素穗肥运筹以倒四、倒二叶龄期等量追施相配套(N2处理),能促进花后氮素累积,提高剑叶光合速率和1,5-二磷酸核酮糖羧化酶、谷氨酰胺合成酶等碳氮代谢关键酶活性,促进叶片、茎鞘、根系、穗各营养器官光合同化物及氮素累积与转运,进而提高产量及氮肥利用率,为本试验氮高效品种配套的氮肥运筹优化模式。花后不同氮肥运筹下,氮高效品种光合同化物、氮素的累积与转运,分别较氮低效品种高7.78~12.75 mg 13C 株-1、15.14~18.78 mg 15N 株-1;且叶片转运量分别较氮低效品种高1.70~2.93 mg 13C 株-1、2.21~4.55 mg 15N 株-1,茎鞘转运量分别较氮低效品种高1.70~2.93 mg 13C 株-1、0.05~1.14 mg 15N 株-1;而穗部氮高效与氮低效品种13C同化物分别增加31.04~44.68 mg 13C 株-1(占13C总量的42.04%~46.38%)、24.94~34.26 mg 13C 株-1(占13C总量的36.45%~41.36%),15N则分别增加35.56~46.58 mg 15N 株-1(占15N总量的61.82%~82.93%)、27.37~31.57 mg 15N 株-1(占15N总量的58.04%~68.31%)。氮高效品种花后具有强光合碳同化、氮素的协同吸收转运特征,以及碳氮代谢能力,来满足籽粒灌浆期对光合同化物及氮素的利用,是氮高效品种相对于氮低效品种高产、氮高效利用的重要原因。此外,从花后不同器官碳氮比(C/N)变化值综合两品种高产及氮肥高效利用来看,N2处理下,齐穗至成熟期叶片、穗部C/N提高幅度与该时期茎鞘、根系C/N降低幅度一致,据此可将C/N作为水稻高产及氮肥高效利用同步提高的评价指标,这具有重要的参考价值。

关键词: 同位素示踪, 氮效率, 水稻, 氮肥, 碳氮代谢

Abstract:

The optimal nitrogen (N) managements and the selection of genotypes with high N use efficiency (NUE) play a vital role in rice production aiminged at high yield and high NUE. Two rice cultivars, one with high-NUE (Dexiang 4103) and the other with low-NUE (Yixiang 3724) were used in pot and field experiments in 2013 and 2014. The total N fertilizer applied was 180 kg ha1 of urea and three treatments were included: 1) 50% basal dressing, 30% topdressing at 7 d after transplanting (DAT), and 20% topdressing at 4th leaves emerged from the top (N1), 2) 30% basal dressing, 30% topdressing at 7 DAT, 40% topdressing was split into two equal applications at 4th and 2nd leaves emerged from the top, 3) 20% basal dressing, 20% topdressing at 7 DAT, 60% topdressing was split into two equal applications at 4th and 2nd leaves emerged from the top, respectively. Double isotope tracing technique of 13C and 15N and physiological-biochemical analysis were used to study the accumulation, translocation, distribution of N and photosynthate, and the correlation between morphology and physiological-biochemical characteristics and their relationships with grain yield. There were significant effects of cultivars and N application modes on grain yield, as well as the absorption and translocation of N and photosynthate from full-heading to maturity stage. Compared with N1and N3, N2 treatment with high-NUE was the best model in this paper referred as the variety and N application coupling model, which could improve N accumulation in rice plant after anthesis, increase photosynthetic rate, activities of ribulose 1,5-bisphosphate carboxylase, and glutamine synthetase in flag leaves, promote accumulation and translocation of photosynthate and N, and then improve the yield and NUE. Double isotope labeling results showed that the accumulation amount of photosynthetic products and N in rice plant with high-NUE was 7.78–12.75 mg 13C plant-1 and 15.14–18.78 mg 15N plant-1 higher, the translocation amount of photosynthate and N in leaves with high-NUE was 1.70–2.93 mg 13C plant-1, 2.21–4.55 mg 15N plant-1 higher, the translocation amount of photosynthate and N in leaf sheaths with high-NUE was 1.70–2.93 mg 13C plant-1, 0.05–1.14 mg 15N plant-1 higher than those with low-NUE, respectively. From full-heading to maturity stage, 13C photosynthate in the spike with high-NUE and low-NUE respectively increased by 31.04–44.68 mg 13C plant-1(accounting for 42.04%–46.38% of total amount of 13C) and 24.94–34.26 mg 13C plant-1 (accounting for 36.45%–41.36% of total amount of 13C), while, 15N accumulation in the spike with high-NUE and low-NUE respectively increased by 35.56–46.58 mg 15N plant-1(accounting for 61.82%–82.93% of total amount of 15N) and 27.37–31.57 mg 15N plant-1 (accounting for 58.04%–68.31% of total amount of 15N). Compared with low-NUE, the high NUE rice cultivar is more beneficial to the accumulation and translocation of photosynthate, with higher N absorption capacity, stronger N translocation ability, and stronger C and N metabolism capacity in leaves, satisfying the N demand of plants during their grain forming stage, which is the important reason for high-NUE rice cultivar further to increase yield and NUE. From, the information of C/N ratio in different organs after-anthesis, combined with the results of high yield and high NUE in different varieties under N2 treatment, from full-heading to maturity stage, the C/N increasing range in leaf and panicle is the same as the reducing range in leaf sheaths and roots. Therefore, C/N ratio in different organs from full-heading to maturity stage might be a candidate indicator for high yield and high NUE in rice production.

Key words: Isotope tracer, N use efficiency, Rice, N fertilizer, Carbon and N metabolism

[1] Haefele S M, Jabbar S M A, Siopongco J D L C, Tirol-Padre A, Amarante S T, Sta Cruz P C, Cosico W C. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels. Field Crops Res, 2008, 107: 137–146
[2] 孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40: 1639–1649
Sun Y J, Sun Y Y, Xu H, Li Y, Yan F J, Jang M J, Ma J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2014, 40: 1639–1649 (in Chinese with English abstract)
[3] Kumar R, Sarawgi A K, Ramos C, Amarante S T, Ismail A M, Wade L J. Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Res, 2006, 96:455–465
[4] Lu Y H, Watanabe A, Kimura M. Input and distribution of photosynthesized carbon in a flooded soil. Global Biogeochem Cycles, 2002, 16:321–328
[5] Mae T, Ohira K. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.). Plant Cell Physiol, 1981, 22: 1067–1074
[6] Sun Y J, Ma J, Sun Y Y, Xu H, Yang Z Y, Liu S J, Jia X W, Zheng H Z. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Res, 2012, 127: 85–98
[7] 黄见良, 邹应斌, 彭少兵, Buresh R J. 水稻对氮素的吸收、分配及其在组织中的挥发损失. 植物营养与肥料学报, 2004, 10: 579–583
    Huang J L, Zou Y B, Peng S B, Buresh R J. Nitrogen uptake, distribution by rice and its losses from plant tissues. Plant Nutr Fert Sci, 2004, 10: 579–583 (in Chinese with English abstract)
[8] Krapp A, Saliba-Colombani V, Daniel-Vedele F. Analysis of C and N metabolisms and of C/N interactions using quantitative genetics. Photosynth Res, 2005, 83: 251–263
[9] 林晶晶, 李刚华, 薛利红, 张巫军, 许慧阁, 王绍华, 杨林章, 丁艳锋. 15N示踪的水稻氮肥利用率细分. 作物学报, 2014, 40: 1424–1434
    Lin J J, Li G H ,Xue L H, Zhang W J, Xu H G, Wang S H, Yang L Z, Ding Y F. Subdivision of nitrogen use efficiency of rice based on 15N tracer. Acta Agron Sin, 2014, 40: 1424–1434 (in Chinese with English abstract)
[10] 闫川, 洪晓富, 阮关海, 余守武, 王绍华, 丁艳锋. 大穗型水稻13C光合产物的积累与分配. 核农学报, 2014, 28: 1282–1287
    Yan C, Hong X F, Ruan G H, Yu S W, Wang S H, Ding Y F. Studies on the accumulation and transformation of assimilation product of heavy panicle type rice using 13C labeling technique. Acta Agric Nucl Sin, 2014, 28: 1282–1287 (in Chinese with English abstract)
[11] 严建民, 翟虎渠, 万建民, 焦德茂, 张荣铣. 亚种间重穗型杂交稻光合产物的运转特性及其生理机制. 中国农业科学, 2003, 36: 502–507
    Yan JM, Zhai H Q, Wan J M, Jiao D M, Zhang R X. Transportation characteristics of assimilate and physiologic mechanisms in subspecific heavy ear hybrid rice (Oryza sativa L.). Sci Agric Sin, 2003, 36: 502–507 (in Chinese with English abstract)
[12] 曾建敏, 崔克辉, 黄见良, 贺帆, 彭少兵. 水稻生理生化特性对氮肥的反应及与氮利用效率的关系. 作物学报, 2007, 33: 1168–1176
    Zeng J M, Cui K H, Huang J L, He F, Peng S B. Responses of physio-biochemical properties to N-fertilizer application and its relationship with nitrogen use efficiency in rice (Oryza sativa L.). Acta Agron Sin, 2007, 33: 1168–1176 (in Chinese with English abstract)
[13] 叶利庭, 宋文静, 吕华军, 栗艳霞, 沈其荣, 张亚丽. 不同氮效率水稻生育后期氮素积累转运特征. 土壤学报, 2010, 47: 303–310
    Ye L T, Song W J, Lyu H J, Li Y X, Shen Q R, Zhang Y L. Accumulation and translocation of nitrogen at late-growth stage in rices different in cultivar nitrogen use efficiency. Acta Pedol Sin, 2010, 47: 303–310 (in Chinese with English abstract)
[14] Broadbent F E, De Datta S K, Laureles E V. Measurement of nitrogen utilization efficiency in rice genotypes. Agron J, 1987, 79: 786–791
[15] 李粹芳, 李立人. 分光光度法与14C标记法测定RuBP羧化酶的活性的比较. 植物生理学通讯, 1989, (1): 49–50
    Li C F, Li L R. Comparison between the spectrophotometric method and 14C-labelled method for measuring RuBPCase activity. Plant Physiol Commun, 1989, (1): 49–50 (in Chinese with English abstract)
[16] Wang H, Lee P, Chen W, Huang D, Su J. Osmotic stress induced changes of sucrose metabolism in cultured sweet potato cells. J Exp Bot, 2000, 51, 1991–1999
[17] 王维, 蔡一霞, 蔡昆争, 张建华, 杨建昌, 朱庆森. 土壤水分亏缺对水稻茎秆贮藏碳水化合物向籽粒运转的调节. 植物生态学报, 2005, 29: 819–828
    Wang W, Cai Y X, Cai K Z, Zhang J H, Yang J C, Zhu Q S. Regulation of soil water deficits on stem stored carbohydrate remobilization to grain of rice. Acta Phytoecol Sin, 2005, 29: 819–828 (in Chinese with English abstract)
[18] 李合生.植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 125–127
Li H S. Experimental Principle and Technique for Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 125–127 (in Chinese)
[19] Lea P J, Blackwell R D, Chen F L. Enzymes of primary metabolism. In: Harborne J B. Methods in Plant Biochemistry. Vol. 3. New York: Academic Press, 1990. pp 260–273
[20] 田纪春, 陈建省, 王延训, 张永祥. 氮素追肥后移对小麦籽粒产量和旗叶光合特性的影响. 中国农业科学, 2001, 34: 101–103
    Tian J C, Chen J S, Wang Y X, Zhang Y X. Effects of delayed-nitrogen application on grain yield and photosynthetic characteristics in flag leaves of wheat cultivars. Sci Agric Sin, 2001, 34: 101–103 (in Chinese with English abstract)
[21] 本庄一雄. 米のタンパク含量に関する研究: 第2報 施肥条件のちがいが玄米のタンパク質含有率およびタンパク質総量に及ぼす影響. 日本作物學會紀事, 1971, 40 :190–196
Honjyo K. Studies on protein content in rice grain: II. Effects of the fertilization on protein content and protein production in paddy grain. Jpn J Crop Sci, 1971, 40: 190–196 (in Japanese with English abstract)
[22] 王永锐, 周洁. 杂交水稻始穗期氮钾营养对剑叶生理特性的影响. 中国水稻科学, 1997, 11: 165–169
    Wang Y R, Zhou J. Effects of N, K supply at initial stage of panicle emerging on physiological traits in flag leaf of hybrid rice Shanyou 63. Chin J Rice Sci, 1997, 11: 165–169 (in Chinese with English abstract)
[23] 宋建民, 田纪春, 赵世杰. 植物光合碳和氮代谢之间的关系及其调节. 植物生理学通讯, 1998, 34: 230–236
    Song J M, Tian J C, Zhao S J. The relationship between photosynthetic carbon and nitrogen metabolism and its regulation in plants. Plant Physiol Commun, 1998, 34: 230–236 (in Chinese with English abstract)
[24] 杨建昌, 王志琴, 朱庆森. 水稻产量源库关系的研究. 扬州大学学报(农业与生命科学版), 1993, (3): 47–53
Yang J C, Wang Z Q, Zhu Q S. Studies on yield source and sink relationships in rice. J Yangzhou Univ(Agric & Life Sci Edn), 1993, (3): 47–53 (in Chinese with English abstract)
[25] Moore P A, Gilmour J T, Wells B R. Seasonal patterns of growth and soil nitrogen uptake by rice. Soil Sci Soc Am J, 1981, 45: 875–879
[26] 蒋德安, 陆庆, 翁晓燕, 郑炳松, 奚海福. 水稻光合关键酶类在光合日变化中的作用. 作物学报. 2001, 27: 301–307
Jiang D A, Lu Q, Wang X Y, Zheng B S, Xi H F. Role of key enzymes for photosynthesis in the diurnal change of photosynthetic rate in rice. Acta Agron Sin, 2001, 27: 301–307 (in Chinese with English abstract)
[27] Peng S B, Huang J H, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agric Sci China, 2002, 1: 776–785
[28] 胡健, 杨连新, 周娟, 王余龙, 朱建国. 开放式空气CO2浓度增高和施氮量对水稻结实期叶片内肽酶活力的影响. 中国水稻科学, 2008, 22: 155–160
Hu J, Yang L X, Zhou J, Wang Y L, Zhu J G. Effect of free air CO2 enrichment (FACE) and nitrogen level on endopeptidase activities in rice leaves during grain filling stage. Chin J Rice Sci, 2008, 22: 155–160 (in Chinese with English abstract)
[29] 孙永健, 孙园园, 李旭毅, 郭翔, 马均. 水氮互作下水稻氮代谢关键酶活性与氮素利用的关系. 作物学报, 2009, 35: 2055–2063
    Sun Y J, Sun Y Y, Li X Y, Guo X, Ma J. Relationship of activities of key enzymes involved in nitrogen metabolism with nitrogen utilization in rice under water-nitrogen interaction. Acta Agron Sin, 2009, 35: 2055–2063 (in Chinese with English abstract)
[30] Weigelt K, Kuster H, Rutten T, Fait A, Fernie A R, Miersch O, Wasternack C. ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses. Plant Physiol, 2009, 149: 395–411

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!