欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (07): 1003-1011.doi: 10.3724/SP.J.1006.2017.01003

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

白芝麻籽粒油脂、蛋白质及芝麻素含量QTL定位分析

吴坤1,2,吴文雄1,杨敏敏1,刘红艳1,郝国存1,赵应忠1,*   

  1. 1中国农业科学院油料作物研究所 / 农业部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062; 2西南大学生物技术中心, 重庆 400715
  • 收稿日期:2016-08-18 修回日期:2017-01-20 出版日期:2017-07-12 网络出版日期:2017-03-22
  • 通讯作者: 赵应忠, E-mail: zhaoyz63@163.com, Tel: 027-86733625
  • 基金资助:

    本研究由国家自然科学基金项目(31201243), 国家重点基础研究发展计划(973计划)项目(2011CB109304), 国家现代农业产业技术体系建设专项(CARS-15)资助。

QTL Mapping for Oil, Protein and Sesamin Contents in Seeds of White Sesame

WU Kun1,2,WU Wen-Xiong1,YANG Min-Min1,LIU Hong-Yan1,HAO Guo-Cun1,ZHAO Ying-Zhong1,*   

  1. 1 Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China; 2 Biotechnology Research Center of Southwest University, Chongqing 400715, China
  • Received:2016-08-18 Revised:2017-01-20 Published:2017-07-12 Published online:2017-03-22
  • Contact: 赵应忠, E-mail: zhaoyz63@163.com, Tel: 027-86733625
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (31201243), the National Key Basic Research Program of China (973 Program) (2011CB109304), and the China Agriculture Research System (CARS-15).

摘要:

芝麻籽粒油脂、蛋白质和芝麻素含量是芝麻品质育种的3个重要目标。为了解析其遗传机制并检测相关QTL,利用近红外谷物品质分析仪对一个包含224个株系的F9代重组自交系(RIL)群体在2年3个环境下的籽粒品质性状检测,结果表明,群体内株系间差异显著且呈典型正态分布,而同一环境不同重复间表现差异不显著。相关性分析显示,籽粒含油量与蛋白质含量显著负相关,籽粒含油量与芝麻素含量显著正相关,蛋白质含量与芝麻素含量显著负相关;利用该RIL群体已构建的高密度遗传图谱,采用基于混合线性模型的复合区间作图法(MCIM)检测到8个QTLs,表型贡献率为0.41%~14.55%;采用多重区间作图法(MIM)检测到13个QTLs,可解释5.2%~18.6%的表型变异。其中5个主效QTLs被2种方法同时检测到且定位区间相同,2个主效QTLs在2个或3个环境中被重复检测到。控制含油量的Qoc-5与芝麻素含量的Qsc-5位于LG5连锁群上的相同区段,加性效应均为正值;而控制蛋白质含量的Qpc-5也位于相邻位置,但加性效应为负值。LG2和LG1连锁群上也存在相似情况,反映品质性状相关QTL之间存在一因多效或紧密连锁。因此,在芝麻品质育种中选择高含油量可以兼顾高芝麻素,但应对蛋白质含量进行负向选择。

关键词: 芝麻, 含油量, 蛋白质含量, 麻素含量, QTL

Abstract:

Seed oil content, protein content and sesamin content are three important targets for sesame breeding. The objective of this study was to explore the genetic model and detect quantitative trait loci (QTLs) for three quality traits using a mapping population containing 224 recombinant inbred lines (RILs, F9). The three quality traits of seeds were measured by near infrared reflectance spectroscopy (NIRS) in three environments. Correlation analysis showed oil content was negatively correlated with protein content but positively correlated with sesamin content, whereas, protein content was negatively correlated with sesamin content. Using mixed composite interval mapping (MCIM) method, a total of eight QTLs distributed were detected for the three seed quality traits, with contribution ratio of QTL additive effect from 0.41% to 14.55%. While 13 QTLs were detected on nine LGs with multiple interval mapping (MIM), explaining 5.2% to 18.6% of the total phenotypic variation. Five QTLs were detected to be located on the same regions with MCIM and MIM, and two QTLs were detected in more than two environments. The Qoc-5 and Qsc-5 were located on the same region of LG5, both of which had positive additive effect, while the Qpc-5 was on the nearby region with negative additive effect. Similar results also existed on LG2 and LG1, which might be due to pleiotropism or closely linkage. Accordingly, the contents of oil and sesamin in seed can be improved together, while select protein content negatively in breeding.

Key words: Sesame, Oil content, Protein content, Sesamin content, QTL

[1] Morrell P L, Buckler E S, Ross-Ibarra J. Crop genomics: advances and applications. Nat Rev Genet, 2012, 13: 85–96 [2] 张书芬, 傅廷栋, 朱家成, 王建平, 文雁成, 马朝芝. 甘蓝型油菜产量及其构成因素的QTL定位与分析. 作物学报, 2006, 32: 1135–1142 Zhang S F, Fu T D, Zhu J C, Wang J P, Wen Y C, Ma C Z. QTL Mapping and epistasis analysis for yield and its components in Brassica napus L. Acta Agron Sin, 2006, 34: 1135–1142 (in Chinese with English abstract) [3] Yan X Y, Li J N, Fu F Y, Jin M Y, Jin M Y, Chen L, Liu L Z. Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica, 2009, 170: 355–364 [4] 金梦阳, 李加纳, 付福友, 张正圣, 张学昆, 刘列钊. 甘蓝型油菜含油量及皮壳率的QTL分析. 中国农业科学, 2007, 40: 677–684 Jin M Y, Li J N, Fu F Y, Zhang Z S, Zhang X K, Liu L Z. QTL Analysis of oil and hull content in Brassica napus L. Sci Agric Sin, 2007, 40: 677–684 (in Chinese with English abstract) [5] Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max (L.) Merr.) genetic map and association with EST markers. Theor Appl Genet, 2004, 108: 1131–1139 [6] 郑永战, 盖钧镒, 卢为国, 李卫东, 周瑞宝, 田少君. 大豆脂肪及脂肪酸组分含量的QTL定位. 作物学报, 2006, 32: 1823–1830 Zheng Y Z, Gai J Y, Lu W G, Li W D, Zhou R B, Tian S J. QTL mapping for fat and fatty acid composition contents in soybean. Acta Agron Sin, 2006, 32: 1823–1830 (in Chinese with English abstract) [7] 廖伯寿, 雷永, 王圣玉, 李栋, 黄家权, 姜慧芳, 任小平. 花生重组近交系群体的遗传变异与高油种质的创新. 作物学报, 2008, 34: 999–1004 Liao B S, Lei Y, Wang S Y, Li D, Huang J Q, Jiang H F, Ren X P. Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin, 2008, 34: 999–1004 (in Chinese with English abstract) [8] Hui Y H, 徐生度, 裘爱泳(译). 油脂化学与工艺学(第5版,第3卷). 北京: 中国轻工业出版社, 2001. pp 474–513 Hui Y H, Xu S D, Qiu A Y. Trans. Industrial Oil & Fat Products, 5th edn, Vol. 3. Beijing: China Light Industry Press, 2001. pp 474–513 (in Chinese) [9] 梅鸿献, 魏安池, 刘艳阳, 王春弘, 杜振伟, 郑永战. 芝麻种质资源芝麻素蛋白质脂肪含量变异及其相关分析. 中国油脂, 2013, 38(4): 87–90 Mei H X, Wei A C, Liu Y Y, Wang C H, Du Z W, Zheng Y Z. Variation and correlation analysis of sesamin, oil and protein contents in sesame germplasm resources. China Oils Fats, 2013, 38(4): 87–90 (in Chinese with English abstract) [10] 张秀荣, 李培武, 汪雪芳, 王旭. 芝麻种子木质素组分、粗脂肪、粗蛋白含量及相关性分析. 中国油料作物学报, 2005, 27: 88–90 Zhang X R, Li P W, Wang X F, Wang X. Studies on relationship among lignans, oil and protein content in sesame seed. Chin J Oil Crop Sci, 2005, 27: 88–90 (in Chinese with English abstract) [11] Wang L H, Zhang Y X, Li P W, Wang X F, Zhang W, Wei W L, Zhang X R. HPLC analysis of seed sesamin and sesamolin variation in a sesame germplasm collection in China. J Am Oil Chem Soc, 2012, 89: 1011–1020 [12] 金青哲, 刘元法, 王兴国, 戴洪平. 国产芝麻中芝麻素含量分析. 中国粮油学报, 2005, 20: 85–87 Jin Q Z, Liu Y F, Wang X G, Dai H P. Analysis of sesamin in domestic Sesamum indicum L. J Chin Cereals Oils Assoc, 2005, 20: 85–87 (in Chinese with English abstract) [13] 危文亮, 张艳欣, 吕海霞, 王林海, 黎冬华, 张秀荣. 芝麻资源群体结构及含油量关联分析. 中国农业科学, 2012, 45: 1895–1903 Wei W L, Zhang Y X, Lü H X, Wang L H, Li D H, Zhang X R. Population structure and association analysis of oil content in a diverse set of Chinese sesame (Sesamum indicum L.) germplasm. Sci Agric Sin, 2012, 45: 1895–1903 (in Chinese with English abstract) [14] 王蕾, 黎冬华, 齐小琼, 张艳欣, 丁霞, 王林海, 危文亮, 高媛, 张秀荣. 芝麻核心种质芝麻素和芝麻酚林的关联分析. 中国油料作物学报, 2014, 36: 32–37 Wang L, Li D H, Qi X Q, Zhang Y X, Ding X, Wang L H, Wei W L, Gao Y, Zhang X R. Association analysis of sesamin and sesamolin in the core sesame (Sesamum indicum L.) germplasm. Chin J Oil Crop Sci, 2014, 36: 32–37 (in Chinese with English abstract) [15] Wu K, Liu H Y, Yang M M, Tao Y, Ma H H, Wu W X, Zuo Y, Zhao Y Z. High-density genetic map construction and QTL analysis of grain yield-related traits in Sesame (Sesamum indicum L.) based on RAD-Seq techonology. BMC Plant Biol, 2014, 14: 274 [16] Schlotzhauer S D, Littell R C. SAS System for Elementary Statistical Analysis. SAS institute, Cary, North Carolina. 1997 [17] Wang S, Basten C J, Zeng Z B. Windows QTL cartographer version 2.5. Department of statistics, North Carolina State University, Raleigh, NC. 2006. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm) [18] Yang J, Hu C, Hu H, Yu R, Xia Z. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721–723 [19] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963–971 [20] Kamal-Eldin A, Appelqvist L A, Yousif G. Lignan analysis in seed oils from four Sesamum species: comparison of different chromatographic methods. J Oil Fat Ind, 1994, 71: 141–147 [22] Zhang S F, Ma C Z, Zhu J C, Wang J P, Wen Y C, Fu T D. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene. Acta Genet Sin, 2006, 33: 171–180 [23] Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. Oil content in a European × Chinese rape seed population QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci, 2005, 45: 51–59 [24] 马珍珍, 李加纳, Benjamin WITTKOP, Martin FRAUEN, 阎星颖, 刘列钊, 肖阳. 甘蓝型油菜籽粒含油量、蛋白质、纤维素及半纤维素含量QTL分析. 作物学报, 2013, 39: 1214–1222 Ma Z Z, Li J N, Wittkop B, Frauen M, Yan X Y, Liu L Z, Xiao Y. QTL Mapping for oil, protein, cellulose, and hemicellulose contents in seeds of Brassica napus L. Acta Agron Sin, 2013, 39: 1214–1222 (in Chinese with English abstract) [25] 戴维, 刘应泽, 郭世星, 蒋俊. 不同环境下甘蓝型油菜含油量的杂种优势及配合力分析. 西南农业学报, 2008, 21: 581–585 Dai W, Niu Y Z, Guo S X, Jiang J. Analysis of heterosis and combining ability in oil content in Brassica napus L. under different environments. Southwest China Agric Sci, 2008, 21: 581–585 (in Chinese with English abstract) [26] Si P, Rodney J M, Nick G, David W T. Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) across southern Australia. Aust J Agric Res, 2003, 54: 397–407 [27] 禹山林, 杨庆利, 潘丽娟, 薄文娜. 花生种子含油量的遗传分析. 植物遗传资源学报, 2009, 10: 453–456 Yu S L, Yang Q L, Pan L J, Bo W N. Genetic analysis for oil content of peanut seeds. J Plant Genet Resourc, 2009, 10: 453–456 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[4] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[5] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[6] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[7] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[8] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[9] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[10] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[11] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[12] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[13] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[14] 孟鑫浩, 张靖男, 崔顺立, Charles Y.Chen, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析[J]. 作物学报, 2021, 47(10): 1874-1890.
[15] 李竟才, 王强林, 宋威武, 黄维, 肖桂林, 吴承金, 顾钦, 宋波涛. 基于侯选基因标记的四倍体马铃薯休眠QTL关联分析[J]. 作物学报, 2020, 46(9): 1380-1387.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!