欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (07): 1012-1020.doi: 10.3724/SP.J.1006.2017.01012

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应

曹红利1,2,**,王璐1,**,钱文俊1,郝心愿1,杨亚军1,*,王新超1,*   

  1. 1中国农业科学院茶叶研究所 / 国家茶树改良中心 / 农业部茶树生物学与资源利用重点实验室, 浙江杭州310008; 2福建农林大学园艺学院, 福建福州350002
  • 收稿日期:2016-10-21 修回日期:2017-03-01 出版日期:2017-07-12 网络出版日期:2017-03-24
  • 通讯作者: 王新超, E-mail: xcw75@tricaas.com, Tel: 0571-86653162; 杨亚军, E-mail: yjyang@tricaas.com.
  • 基金资助:

    本研究由浙江省自然科学基金(LY14C160001), 国家自然科学基金项目(31500564), 国家现代农业产业技术体系建设专项(CARS-23)和中国农业科学院农业科技创新工程项目(CAAS-ASTIP-2014-TRICAAS)资助。

Positive Regulation of CsbZIP4 Transcription Factor on Salt Stress Response in Transgenic Arabidopsis

CAO Hong-Li1,2,**,WANG Lu1,**,QIAN Wen-Jun1,HAO Xin-Yuan1,YANG Ya-Jun1,*,WANG Xin-Chao1,*   

  1. 1Tea Research Institute, Chinese Academy of Agricultural Sciences / National Center for Tea Improvement / Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China; 2College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2016-10-21 Revised:2017-03-01 Published:2017-07-12 Published online:2017-03-24
  • Contact: Wang Xinchao, E-mail: xcw75@tricaas.com, Tel: 0571-86653162;Yang Yajun, E-mail: yjyang@tricaas.com.
  • Supported by:

    This study was supported by the Natural Science Foundation of Zhejiang Province (LY14C160001), the National Natural Science Foundation of China (31500564), the Earmarked Fund for China Agriculture Research System (CARS-23), and the Chinese Academy of Agricultural Sciences through an Innovation Project for Agricultural Sciences and Technology (CAAS-ASTIP-2014-TRICAAS).

摘要:

bZIP转录因子是真核生物中一类多功能蛋白家族, 参与种子成熟、光信号调节、胁迫响应等多种生物学过程, 拟南芥中根据序列相似性和保守域主要分为10个亚家族(A-I和S)。本文以茶树的C亚家族转录因子CsbZIP4为研究对象, 调查非生物胁迫下的表达模式, 及转化拟南芥后CsbZIP4过表达对耐盐性的影响。结果显示, 在4℃低温、外源ABA、盐和干旱胁迫处理后, CsbZIP4的表达在茶树叶片中呈上调模式, 特别是在盐和干旱胁迫下其表达分别上调2.9倍和2.2倍; 而在根中, 低温、盐和干旱胁迫均能显著抑制CsbZIP4的表达, 其中盐胁迫能将其表达抑制2倍; 荧光显微镜下观察CsbZIP4-GFP融合蛋白, 将CsbZIP4定位于细胞核中; CsbZIP4的过表达能够降低转基因株系种子萌发时对外源ABA、盐胁迫的敏感性, 在300 mmol L–1 NaCl盐胁迫下, 转化拟南芥植株过表达CsbZIP4增强抗性, 其叶片的SPAD值较高, 同时过表达株系中盐胁迫响应基因AtSOS1的表达显著增强。根据CsbZIP4正调控拟南芥的盐胁迫响应, 推断CsbZIP4与茶树抵御盐胁迫密切相关。

关键词: 茶树, CsbZIP4转录因子, 非生物胁迫, 耐盐性

Abstract:

Basic region / leucine zipper (bZIP) transcription factors is a multi-functional protein family in eukaryotes, which is involved in various biological processes including seed maturation, light signaling regulation and stress response. According to sequence similarity and conserved motifs, the AtbZIPs are classified into 10 groups (A, B, C, D, E, F, G, H, I, and S). In this study, CsbZIP4 of C-group bZIP transcription factors was as an objective, the expression patterns of CsbZIP4 in response to abiotic stress in tea plants were investigated, and the salinity tolerance caused by CsbZIP4 overexpression in Arabidopsis was analyzed. The CsbZIP4 from tea plant leaves was up-regulated under 4°C, exogenous ABA, salinity and dehydration stresses, especially induction of salinity and dehydration stresses led to up-regulation of 2.9-fold and 2.2-fold, respectively. In roots, CsbZIP4 was down-regulated in response to cold, salinity and dehydration stresses, especially down-regulated by 2-fold under salinity stress. Under fluorescence microscope, it was indicated that CsbZIP4 was located in nucleus. Constitutive overexpression of CsbZIP4 in transgenic Arabidopsis lowered the plants’ sensitivity to exogenous ABA and salinity at germination stage. Moreover, CsbZIP4 overexpression lines exhibited higher salinity tolerance under 300 mmol L–1 NaCl conditions and higher SPAD values. AtSOS1, which is a salinity responsive gene, was strongly induced in overexpression lines. In conclusion, CsbZIP4 positively regulates salt stress response in Arabidopsis, and might be closely related to the tolerance to salinity stress in tea plant.

Key words: Tea plant, CsbZIP4 transcription factor, Abiotic stress, Salinity tolerance

[1]Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105–2110 [2]Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106–111 [3]Correa L G, Riano-Pachon D M, Schrago C G, dos Santos R V, Mueller-Roeber B, Vincentz M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One, 2008, 3: e2944 [4]Choi H I, Hong J H, Ha J O, Kang J Y, Kim S Y. ABFs, a family of ABA-responsive element binding factors. J Biol Chem, 2000, 275: 1723–1730 [5]Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 2000, 97: 11632–11637 [6]Kim S Y. The role of ABF family bZIP class transcription factors in stress response. Physiol Plant, 2006, 126: 519–527 [7]Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant, Cell Environ, 2015, 38: 35–49 [8]Kim S, Kang J Y, Cho D I, Park J H, Kim S Y. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J, 2004, 40: 75–87 [9]Kang J Y, Choi H I, Im M Y, Kim S Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell, 2002, 14: 343–357 [10]Kim J, Kang J Y, Kim S Y. Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J, 2004, 2: 459–466 [11]Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 2008, 228: 225–240 [12]Gao S Q, Chen M, Xu Z S, Zhao C P, Li L, Xu H J, Tang Y M, Zhao X, Ma Y Z. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol, 2011, 75: 537–553 [13]Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938–1952 [14]Hsieh T H, Li C W, Su R C, Cheng C P, Sanjaya, Tsai Y C, Chan M T. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta, 2010, 231: 1459–1473 [15]Ying S, Zhang D F, Fu J, Shi Y S, Song Y C, Wang T Y, Li Y. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta, 2012, 235: 253–266 [16]Zhang L, Zhang L, Xia C, Zhao G, Liu J, Jia J, Kong X. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol Plant, 2015, 153: 17 [17]Cao H L, Wang L, Yue C, Hao X Y, Wang X C, Yang Y J. Isolation and expression analysis of 18 CsbZIP genes implicated in abiotic stress responses in the tea plant (Camellia sinensis). Plant Physiol Biochem, 2015, 97: 432–442 [18]Ruan J, Gerendás J, H?rdter R, Sattelmacher B. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ann Bot, 2007, 99: 301–310 [19]Yue C, Cao H L, Wang L, Zhou Y H, Hao X Y, Zeng J M, Wang X C, Yang Y J. Molecular cloning and expression analysis of tea plant aquaporin (AQP) gene family. Plant Physiol Biochem, 2014, 83: 65–76 [20]Markwell J, Osterman J C, Mitchell J L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth Res, 1995, 46: 467–472 [21]Ling Q, Huang W, Jarvis P. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth Res, 2011, 107: 209–214 [22]Liu C, Wu Y, Wang X. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta, 2012, 235: 1157–1169 [23]Liao Y, Zhang J S, Chen S Y, Zhang W K. Role of soybean GmbZIP132 under abscisic acid and salt stresses. J Integr Plant Biol, 2008, 50: 221–230 [24]Xu Z, Ali Z, Xu L, He X, Huang Y, Yi J, Shao H, Ma H, Zhang D. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean. Sci Rep, 2016, 6: 20366 [25]Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol, 2014, 84: 19–36 [26]Yang Q, Chen Z Z, Zhou X F, Yin H B, Li X, Xin X F, Hong X H, Zhu J K, Gong Z. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant, 2009, 2: 22–31 [27]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273 [28]Shi H, Ishitani M, Kim C, Zhu J K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 2000, 97: 6896–6901 [29]Shi H, Lee B, Wu S, Zhu J K. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol, 2003, 21: 81–85 [30]Shi H, Quintero F J, Pardo J M, Zhu J K. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 2002, 14: 465–477 [31]Apse M, Aharon G, Snedden W, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science, 1999, 285: 1256–1258 [32]Zhou L, Wang C, Liu R, Han Q, Vandeleur R K, Du J, Tyerman S, Shou H X. Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1;6 confers salt tolerance. BMC Plant Biol, 2014, 14: 1–13

[1] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[2] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[3] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[4] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[5] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[6] 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究[J]. 作物学报, 2020, 46(9): 1351-1358.
[7] 宝力格,陆平,史梦莎,许月,刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定[J]. 作物学报, 2020, 46(5): 734-744.
[8] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[9] 刘谢香,常汝镇,关荣霞,邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选[J]. 作物学报, 2020, 46(01): 1-8.
[10] 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175.
[11] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[12] 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037.
[13] 柯丹霞,彭昆鹏,张孟珂,贾妍,王净净. 大豆GmHDL57基因的克隆及抗盐功能鉴定[J]. 作物学报, 2018, 44(9): 1347-1356.
[14] 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247.
[15] 彭章, 童华荣, 梁国鲁, 石艺琦, 袁连玉. 茶树叶片和胚根原生质体的分离及PEG诱导融合[J]. 作物学报, 2018, 44(03): 463-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!