欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1588-1595.doi: 10.3724/SP.J.1006.2017.01588

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

反义RNA介导GmFAD2-1B基因沉默增强大豆种子中油酸的高效累积

杨静,邢国杰,牛陆,贺红利,杜茜,郭东全,袁英*,杨向东*   

  1. 吉林省农业科学院农业生物技术研究所 / 吉林省农业生物技术重点实验室,吉林长春130033?
  • 收稿日期:2017-03-20 修回日期:2017-07-19 出版日期:2017-11-12 网络出版日期:2017-08-01
  • 通讯作者: 杨向东, E-mail: xdyang020918@126.com, Tel: +86-431-87063044
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2016ZX08004-003)和国家自然科学基金项目(31671764)资助。

Antisense RNA-Mediated GmFAD2-1B Gene Silencing Enhances Accumulation of Oleic Acid in Transgenic Soybean Seeds

YANG Jing,XING Guo-Jie,NIU Lu,HE Hong-Li,DU Qian,GUO Dong-Quan,YUAN Ying*,YANG Xiang-Dong*   

  1. Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences / Jilin Provincial Key Laboratory of Agricultural Biotechnology, Changchun 130033, China
  • Received:2017-03-20 Revised:2017-07-19 Published:2017-11-12 Published online:2017-08-01
  • Contact: 杨向东, E-mail: xdyang020918@126.com, Tel: +86-431-87063044
  • Supported by:

    This study was supported by the National Major Project for Developing New GM Crops (2016ZX08004-003) and the National Natural Science foundation of China (31671764).

摘要:

油酸含量是评价大豆油食用品质和稳定性的重要指标。本研究采用农杆菌介导转化法,将反义GmFAD2-1B基因导入栽培大豆品种,获得油酸含量显著提高的转基因大豆新品系。Southern杂交检测表明,外源GmFAD2-1B基因片段已导入大豆基因组,其插入拷贝数为1~5个。qRT-PCR检测表明,外源GmFAD2-1B主要在大豆种子中表达,并导致种子中内源GmFAD2-1 mRNA表达水平显著降低,而根、茎、叶、花组织中内源GmFAD2-1 mRNA表达水平无显著变化。脂肪酸组分分析表明,12份转基因大豆种子油酸含量为27.38%~80.42%,其中,L40和L72油酸含量分别为68.91%~80.42%和65.98%~80.22%,较对照品种Williams 82 (17.8%~22.0%)提高2.65倍以上,亚油酸降低至4.84%~14.55%,饱和脂肪酸降低至10.34%~11.16%,但总脂肪和总蛋白含量与对照品种相比没有显著变化。农艺性状分析表明,转基因大豆在熟期、株高、叶形、花色、结荚高度、百粒重等方面与对照品种也没有显著差异。

关键词: 大豆, 油酸, GmFAD2-1B, 农杆菌介导转化法

Abstract:

The content of oleic acid is usually taken as a crucial indicator of cooking quality and stability for soybean oil. Breeding soybean cultivars with high oleic acid has always been considered as one of the principal aims for soybean improvement. In this study, the anti-sense GmFAD2-1B gene from soybean was transformed into the cultivated soybean by Agrobacterium-mediated method and several soybean transgenic lines with dramatically increased oleic acid content were obtained. Southern blot analysis confirmed integration of the anti-sense GmFAD2-1B fragment into the soybean genome with one to five copies of T-DNA insertions in the selected independent transgenic plants. The results of qRT-PCR showed that the foreign anti-sense GmFAD2-1B was mainly expressed in the transgenic seeds and simultaneously resulted in a significant decrease of the endogenous GmFAD2-1 mRNA, however, there were no significant differences observed for GmFAD2-1 mRNA contents in the root, leaf, stem and flower tissues of the transgenic plants compared to the non-transgenic ones. Analysis of the fatty acid compositions indicated that the content of oleic acid increased to 27.38%–80.42% in twelve transgenic lines. Specifically, in transgenic lines L40 and L72, oleic acid content was raised to 68.91%–80.42% and 65.98%–80.22% respectively, with over 2.65-fold increase compared with the wild type Williams 82 (containing 17.8%–22.0% of oleic oil). Concomitantly, linoleic acid and saturated fatty acid were reduced to 4.84%–14.55% and 10.34%–11.16% respectively in the seeds of transgenic lines L40 and L72. However, there was no significant difference in total oil and protein contents, as well as agronomic traits such as maturity period, plant height, leaf shape, flower color, pod height and weight per 100 seeds between the transgenic lines and non-transformed controls.

Key words: Soybean, Oleic acid, GmFAD2-1B, Agrobacterium-mediated transformation

[1]Clemente T E, Cahoon E. Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol, 2009, 151: 1030–1040 [2]Sari A R, Thomas G, Christoph B, John B O. Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell, 2002, 14: 1191–1206 [3] Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1994, 6: 147–158 [4]Li L Y, Wang X L, Gai J Y, Yu D. Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. Plant Physiol, 2007, 64: 516–526 [5] Lee K R, Sohn S I, Jung J H, Kim S H, Roh K H, Kim J B, Suh M C, Kim H U. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Gene, 2013, 531: 253–262 [6] Hongtrakul V, Slabaugh M, Knapp S J. A seed specific Δ-12 oleate desaturase is duplicated, rearranged, and weakly expressed in high oleic acid sunflower lines. Crop Sci, 1998, 38: 1245–1249 [7] López Y, Nadaf H L, Smith O D, Fritz A K. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet, 2000, 101: 1131–1138 [8] Zhang D, Irma L P, Stacy J P, Mongkol N, Purnima N, Sylvia W W, Robert M P, Kent D C. Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiol Biochem, 2009, 47: 462–471 [9] Heppard E P, Kinney A J, Stecca K L, Miao G H. Developmental and growth temperature regulation of two different microsomalω-6saturase genes in soybeans. Plant Physiol, 1996, 110: 311–319 [10] Tang G Q, Novitzky W P, Griffin H C, Huber S C, Dewey R E. Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J, 2005, 44: 433–446 [11] Pham A T, Lee J D, Shannon J G, Bilyeu K D. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol, 2010, 10: 195 [12] Li L Y, Wang X L, Gai J Y, Yu D Y. Isolation and characterization of a seed-specific isoform of microsomal omega-6 fatty acid desaturase gene (FAD2-1B) from soybean. DNA Sequence. 2008. 19: 28–36 [13] Zhang L, Yang X D, Zhang Y Y, Yang J, Qi G X, Guo D Q, Xing G J, Yao Y, Xu W J, Li H Y, Li Q Y, Dong Y S. Changes in oleic acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing. Int J Genom, 2014, 921–950 [14] Wang G L, Xu Y N. Hypocotyl-based A grobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep, 2008, 27: 1177–1184 [15]Haun W, Coffman A, Clasen B M, Demorest Z L, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas D F, Zhang F. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J, 2014, 12: 934–940 [16] 杨向东, 牛陆, 张伟, 杨静, 杜茜, 邢国杰, 郭东全, 李启云, 董英山. RNAi介导SMV-P3基因沉默增强大豆对花叶病毒病的抗性. 作物学报, 2016, 42: 1647–1655 Yang X D, Niu L, Zhang W, Yang J, Du Q, Xing G J, Guo D Q, Li Q Y, Dong Y S. RNAi-mediated SMV-P3 silencing increases soybean resistance to soybean mosaic virus. Acta Agron Sin, 2016, 42: 1647–1655 (in Chinese with English abstract) [17] Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res, 1991, 19: 1349 [18]Tel-Zur N, Abbo S, Myslabodski D, Mizrahi Y. Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Plant Mol Biol Rep, 1999, 17: 249–254 [19] Yoshino M, Nagamatsu A, Tsutsumi K, Kanazawa A. The regulatory function of the upstream sequence of the beta-conglycinin alpha subunit gene in seed-specific transcription is associated with the presence of the RY sequence. Genes Genet Syst, 2006, 81: 135–141 [20] Alt J L, Fehr W R, Welke G A, Shannon J G. Transgressive segregation for oleate content in three soybean populations. Crop Sci, 2005, 45: 2005–2007 [21] Scherder C W, Fehr W R. Agronomic and seed characteristics of soybean lines with increased oleate content. Crop Sci, 2008, 48: 1755–1758

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!