作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1611-1621.doi: 10.3724/SP.J.1006.2017.01603
申聪聪1,2,朱亚军2,陈凯2,陈慧珍3,吴志超1,2,孟丽君2,徐建龙1,2,4,*
SHEN Cong-Cong1,2,ZHU Ya-Jun2,CHEN Kai2,CHEN Hui-Zhen3,WU Zhi-Chao1,2,MENG Li-Jun2,XU Jian-Long1,2,4,*
摘要:
利用多亲本高代互交系(multi-parent advanced generation inter-cross, MAGIC)群体(DC1、DC2和8way)及其复合群体DC12 (DC1+DC2)和RMPRIL (DC1+DC2+8way)进行关联分析定位水稻抽穗期和株高QTL。2015年和2016年分别在江西和深圳收集3个MAGIC群体抽穗期数据, 2016年在两地收集株高数据, 结合Rice 55K SNP芯片进行基因分型, 利用关联分析方法检测到3个影响抽穗期的主效QTL (qHD3、qHD6和qHD8), 分别位于第3、第6和第8染色体, 且分别与已知抽穗期基因DTH3、Hd3a和Ghd8在同一区域。检测到5个影响株高的QTL (qPH1.1、qPH1.2、qPH1.3、qPH4和qPH6), 其中qPH1.1和qPH1.2位于已知基因Psd1和sd1附近, 其余3个QTL为影响株高的新位点, 但仅在1个群体和单个环境下被检测到, QTL表达受遗传背景和环境影响大。不同MAGIC群体定位抽穗期和株高的效果不同, 在8亲本MAGIC群体8way及复合群体DC12和RMPRIL分别检测到5、5和6个抽穗期和株高QTL, 明显多于4亲本群体DC1的2个和DC2的4个, 而且作图的精度更高, 表现在定位到的QTL显著水平高和与已知基因距离更近, 尤其是复合群体的联合分析(如DC12和RMPRIL)的作图优势更为明显。研究结果为抽穗期和株高有利基因挖掘奠定了基础, 同时为分子育种提供材料和有利信息。
[1]Chang T T, Li C C, Vergara B S. Component analysis of duration from seeding to heading in rice by the basic vegetative phase and the photoperiod-sensitive phase. Euphytica, 1969, 18: 79–91 [2]岳兵, 邢永忠. 水稻抽穗期分子遗传研究进展. 分子植物育种, 2005, 3: 222–228 Yue B, Xing Y Z. Progress on molecular and genetic studies of heading date in rice. Mol Plant Breed, 2005, 3(2): 222–228 (in Chinese with English abstract) [3]孙旭初. 水稻茎杆抗倒性的研究. 中国农业科学, 1987, 20(4): 32–37 Sun X C. Studies on the resistance of the culm of rice to lodging. Sci Agric Sin, 1987, 20(4): 32–37 (in Chinese with English abstract) [4]李荣田, 姜廷波, 秋太权, 崔成焕, 龚振平. 水稻倒伏对产量影响及倒伏和株高关系的研究. 黑龙江农业科学, 1996, (1): 13–17 Li R T, Jiang T B, Qiu T Q, Cui C H, Gong Z P. Study on effect of loading to yield and relationship between lodging and plant height in rice. Agric Sci Heilongjiang, 1996, (1): 13–17 (in Chinese with English abstract) [5]林鸿宣, 钱惠荣, 熊振民, 闵绍楷, 郑康乐. 几个水稻品种抽穗期主效基因与微效基因的定位研究. 遗传学报, 1996, 23: 205–213 Lin H X, Qian H R, Xiong Z M, Min S K, Zheng K L. Mapping of major genes and minor genes for heading date in several rice varieties. Acta Genet Sin, 1996, 23: 205–213 (in Chinese with English abstract) [6]邱磊, 蒋海潮, 冯玉涛, 高冠军, 张庆路, 何予卿. 控制水稻抽穗期和株高的 QTL 的定位及遗传分析. 基因组学与应用生物学, 2014, 33: 828–835 Qiu L, Jiang H C, Feng Y T, Gao G J, Zhang Q L, He Y Q. Mapping and genetic analysis of QTL for heading date and plant height in rice. Genomics Appl Biol, 2014, 33: 828–835 (in Chinese with English abstract) [7]李秀兰, 徐承水. 水稻株高基因及其在育种上的应用. 山东农业科学, 2009, (10): 24–28 Li X L, Xu C S. Plant height genes in rice and their application to breeding. Agric Sci Shandong, 2009, (10): 24–28 (in Chinese with English abstract) [8]杜雪树, 戚华雄, 廖世勇, 方非. 水稻抽穗期分子生物学研究进展. 湖北农业科学, 2013, 52: 5958–5962. Du X S, Qi H X, Liao S Y, Fang F. Advances on the molecular biology of rice heading date. Hubei Agric Sci, 2013, 52: 5958–5962 (in Chinese with English abstract) [9]胡时开, 苏岩, 叶卫军, 郭龙彪. 水稻抽穗期遗传与分子调控机理研究进展. 中国水稻科学, 2012, 26: 373–382. Hu S K, Su Y, Ye W J, Guo L B. Advances in genetic analysis and molecular regulation mechanism of heading date in rice(Oryza sativa L.). Chin J Rice Sci, 2012, 26: 373–382 (in Chinese with English abstract) [10]张云辉, 张所兵, 林静, 汪迎节, 方先文. 水稻株高基因克隆及功能分析的研究进展. 中国农学通报, 2014, 30(12): 1–7 Zhang Y H, Zhang S B, Ling J, Wang Y J, Fang X W. Research progress on cloning and functional analysis of plant height genes in rice(Oryza sativa L.). Chin Agric Sci Bull, 2014, 30(12): 1–7 (in Chinese with English abstract) [11]Hori K, Matsubara K, Yano M. Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Int J Polym Anal Charact, 2010, 67(5): 717–725. [12]Guo L B, Ye G. Use of major quantitative trait loci to improve grain yield of rice. Rice Sci, 2014, 21(2): 65–82 [13]Flint-Garcia S A, Thornsberry J M, Buckler IV E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357–374 [14]Yu J, Buckler E S. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol, 2006, 17: 155–160 [15]Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci, 2005, 10: 297–304 [16]Zhao K, Tung C W, Eizenga G C, Zhao K, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2011, 2: 467 [17]Lipka A E, Kandianis C B, Hudson M E, Yu J, Drnevich J, Bradbury P J, Gore M A. From association to prediction: statistical methods for the dissection and selection of complex traits in plants. Curr Opin Plant Biol, 2015, 24: 110–118 [18]Kover P X, Valdar W, Trakalo J, Scarcelli N, Ehrenreich I M, Purugganan M D, Durrant C, Mott R. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet, 2009, 5(7): e1000551 [19]Higgins R H, Thurber C S, Assaranurak I, Brown P J. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families. G3 (Bethesda), 2014, 4: 1593–1602 [20]Mackay I J, Bansept-Basler P, Barber T, Bentley A R, Cockram J, Gosman N, Greenland A J, Horsnell R, Howells R, O'Sullivan D M, Rose G A, Howell P J. An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. G3 (Bethesda), 2014, 4: 1603–1610 [21]Rakshit S, Rakshit A, Patil J V. Multiparent intercross populations in analysis of quantitative traits. J Genet, 2012, 91: 111–117 [22]Li Z, Ye G, Yang M E, Liu Z X, Lu D B, Mao X X, Wu Q H, Li X F. Genetic characterization of a multiparent recombinant inbred line rice population. Res Crops, 2014, 15: 28–37 [23]Rebetzke G J, Verbyla A P, Verbyla K L, Morell M K, Cavanagh C R. Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnol J, 2014, 12: 219–230 [24]Valdar W, Flint J, Mott R. Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics, 2006, 172: 1783–1797 [25]Broman K W. Genotype probabilities at intermediate generations in the construction of recombinant inbred lines. Genetics, 2012, 190(2): 403–412 [26]Yamamoto E, Iwata H, Tanabata T, Mizobuchi R, Yonemaru J, Yamamoto T, Yano M. Effect of advanced intercrossing on genome structure and on the power to detect linked quantitative trait loci in a multi-parent population: a simulation study in rice. BMC Genet, 2014, 15(1): 50 [27]Meng L, Guo L, Ponce K, Zhao X, Ye G. Characterization of three rice multiparent advanced generation intercross (MAGIC) action. Plant Genome, 2016, 9(2): 1–14 [28]Meng L, Zhao X, Ponce K, Ye G, Leung H. QTL mapping for agronomic traits using multi-parent advanced generation inter-cross (MAGIC) populations derived from diverse elite indica rice lines. Field Crops Res, 2016, 189: 19–42 [29]陈天晓, 朱亚军, 密雪飞, 陈凯, 孟丽君, 左示敏, 徐建龙. 利用水稻MAGIC群体关联定位白叶枯病抗性QTL和创制抗病新种质. 作物学报, 2016, 42: 1437–1447 Chen T X, Zhu Y J, Mi X F, Chen K, Meng Li J, Zuo S M, Xu J L. Mapping of QTLs for bacterial blight resistance and screening of resistant materials using MAGIC populations of rice. Acta Agron Sin, 2016, 42: 1437–1447 (in Chinese with English abstract) [30]Bian X F, Liu X, Zhao Z G, Jiang L, Gao H, Zhang Y H, Zheng M, Chen L M, Liu S J, Zhai H Q, Wan J M. Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep, 2011, 30: 2243–2254 [31]Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri Y A, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K. 14–3–3 proteins act as intracellular receptors for rice Hd3a florigen. Nature, 2011, 476: 332–335 [32]Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319–330 [33]Li R, Xia J, Xu Y, Zhao X, Liu Y G, Chen Y. Characterization and genetic mapping of a Photoperiod-sensitive dwarf 1 locus in rice (Oryza sativa L.). Theor Appl Genet, 2014, 127: 241–250 [34]Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11–17 [35]Zhao M, Liu B, Wu K, Ye Y, Huang S, Wang S, Wang Y, Han R, Liu Q, Fu X, Wu Y. Regulation of OsmiR156h through alternative polyadenylation improves grain yield in rice. PLoS One, 2015, 10(5): e0126154 [36]Pascual L, Desplat N, Huang B E, Desgroux A, Bruguier L, Bouchet J P, Le Q H, Chauchard B, Verschave P, Causse M. Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol J, 2015, 13: 565–577 [37]Stich B, M?hring J, Piepho H P, Heckenberger M, Buckler E S, Melchinger A E. Comparison of mixed-model approaches for association mapping. Genetics, 2008, 178: 1745–1754 [38]王韵, 程立锐, 孙勇,周政, 朱苓华, 徐正进, 徐建龙, 黎志康. 利用双向导入系解析水稻抽穗期和株高QTL及其与环境互作表达的遗传背景效应. 作物学报, 2009, 35: 1386–1394 Wang Y, Cheng L R, Sun Y, Zhou Z, Zhu L H, Xu Z J, Xu J L, L Z K. Genetic background effect on QTL expression of heading date and plant height and their interaction with environment in reciprocal introgression lines of rice. Acta Agron Sin, 2009, 35: 1386–1394 (in Chinese with English abstract) [39]Lee Y S, An G. Regulation of flowering time in rice. J Plant Biol, 2015, 58: 353–360 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[4] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[5] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[6] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[7] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[8] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[9] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[10] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[11] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[12] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[13] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[14] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[15] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
|