欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (11): 1631-1639.doi: 10.3724/SP.J.1006.2018.01631

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

适于陆地棉品种身份鉴定的SNP核心位点筛选与评价

朱国忠,张芳,付洁,李乐晨,牛二利,郭旺珍()   

  1. 南京农业大学 / 作物遗传与种质创新国家重点实验室 / 杂交棉创制教育部工程研究中心, 江苏南京 210095
  • 收稿日期:2018-02-25 接受日期:2018-08-20 出版日期:2018-11-12 网络出版日期:2018-09-04
  • 通讯作者: 郭旺珍
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0102000);江苏现代作物生产协同创新中心(No.10)

Genome-wide Screening and Evaluation of SNP Core Loci for Identification of Upland Cotton Varieties

Guo-Zhong ZHU,Fang ZHANG,Jie FU,Le-Chen LI,Er-Li NIU,Wang-Zhen GUO()   

  1. State Key Laboratory of Crop Genetics & Germplasm Enhancement / Hybrid Cotton R&D Engineering Research Center (the Ministry of Education) / Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2018-02-25 Accepted:2018-08-20 Published:2018-11-12 Published online:2018-09-04
  • Contact: Wang-Zhen GUO
  • Supported by:
    This study was supported by the National Key R&D Program for Crop Breeding(2017YFD0102000);Jiangsu Collaborative Innovation Center for Modern Crop Production Project(No.10)

摘要:

利用全基因组SNP信息, 筛选陆地棉品种特异的核心SNP位点组合, 可为陆地棉品种身份鉴定提供准确高效的检测手段。本研究利用棉花CottonSNP80K芯片对326份不同来源的陆地棉种质进行SNP分型。以南京农业大学陆地棉TM-1基因组Gossypium hirsutum (AD1) genome NBI v1.1版本为参考序列, 对SNP位点进行注释。结果表明, 93.85% (72 990/77 774)的位点检出率超过99%, 61 595 (79.20%)个SNP位点具有多态性, 其中76.32% (47 009)的位点最小等位基因频率(MAF)大于0.1。基于位点检出率大于0.99、位点具多态性、MAF大于0.2、杂合率小于0.05、每条染色体的SNP密度为400 kb/SNP左右等要求, 最终获得4857个覆盖全基因组的高质量核心SNP位点组合。这些核心SNP位点组合平均检出率接近100%; 平均MAF值为0.34; 平均杂合率为0.02; 99%以上的陆地棉材料均能够被准确鉴定。统计分析表明利用核心SNP位点组合与CottonSNP80K的鉴定结果呈极显著相关。本研究提供了包含4857个SNP位点, 适于陆地棉品种指纹图谱绘制的核心SNP位点组合, 可实现陆地棉品种身份鉴定和品种确权。

关键词: DNA芯片, 指纹图谱, SNP, 核心位点, 陆地棉

Abstract:

Utilizing the genome-wide SNP information to screen the core SNP loci may provide an accurate and efficient method for the identification of upland cotton varieties. Using the CottonSNP80K array, SNP genotyping was performed within 326 upland cotton accessions. Then, the SNP loci were annotated with TM-1 genomic sequence of Gossypium hirsutum (AD1) genome NBI v1.1 Upland cotton of Nanjing Agricultural University as reference sequence. Statistical analysis of all loci in CottonSNP80K showed that the call rate of 93.85% loci (72 990 in 77 774) was more than 99%, and 61 595 (79.20%) SNPs were polymorphic loci among the tested upland cotton accessions. Among them, minor allele frequency (MAF) of 76.32% (47 009) loci was greater than 0.1. Based on call frequency for each locus > 0.99; loci with polymorphism; MAF > 0.2; heterozygosity rate < 0.05; SNP density with ~400 kb/SNP in each chromosome, we obtained 4857 high-quality core SNP loci. The characteristic statistics of the core SNP loci combination showed that the average call rate was nearly 100%; the average MAF was 0.34; and the average heterozygosity was 0.02. Using these core SNPs, more than 99% of the materials could be identified accurately and effectively. In addition, the identification results of core SNP loci showed extremely significant linear correlation with that of CottonSNP80K. Taken together, a core combination containing 4857 SNP loci for fingerprint identification of upland cotton varieties is constructed, which can accurately identify the purity and reality of modern upland cotton varieties.

Key words: DNA array, fingerprint, SNP, core loci, Upland cotton

图1

CottonSNP80K芯片SNP位点特征统计 横坐标代表被统计的SNP特征参数, 依次为位点检出率、最小等位基因频率、杂合率和相邻SNP之间的距离。纵坐标代表SNP的分布数目。"

表1

用于指纹图谱绘制的核心SNP位点染色体分布"

染色体
Chr.
染色体长度
Chr. length
(Mb)
标记数Number of SNPs 分布密度
Density
(kb/SNP)
染色体
Chr.
染色体长度
Chr. length
(Mb)
标记数Number of SNPs 分布密度
Density
(kb/SNP)
A01 99.9 250 399.5 D01 61.5 153 401.7
A02 83.4 207 403.1 D02 67.3 169 398.1
A03 100.3 248 404.3 D03 46.7 118 395.7
A04 62.9 156 403.3 D04 51.5 128 402.0
A05 92.0 237 388.4 D05 61.9 156 397.0
A06 103.2 255 404.6 D06 64.3 164 392.0
A07 78.3 197 397.2 D07 55.3 138 400.8
A08 103.6 258 401.7 D08 65.9 164 401.8
A09 75.0 183 409.8 D09 51.0 128 398.4
A10 100.9 256 394.0 D10 63.4 156 406.2
A11 93.3 242 385.6 D11 66.1 169 391.1
A12 87.5 215 406.9 D12 59.1 150 394.1
A13 80.0 204 392.0 D13 60.5 156 388.0
Total 1160.2 2908 399.0 Total 774.4 1949 397.3

表2

用于品种指纹图谱分析的核心SNP位点特征统计"

类型
Type
最大值
Max.
最小值
Min.
平均值
Mean
检出率 Call frequency 1.00 0.99 1.00
最小等位基因频率 MAF 0.50 0.20 0.34
杂合率 Heterozygosity 0.05 0.00 0.02
多态信息含量 PIC 0.50 0.32 0.44

图2

312份陆地棉品种遗传距离相关性分析横坐标代表利用芯片总位点计算的材料间遗传距离, 纵坐标代表利用核心位点计算的材料间遗传距离。"

表3

基于核心SNP位点的陆地棉近等基因系多态性检测"

材料
Accession
多态位点(总位点/核心位点)
No. of polymorphic loci
(total loci/core loci)
多态率(总位点/核心位点)
Polymorphic rate
(total loci/core loci)
新乡小吉和新乡小吉无绒无絮突变体
Xinxiangxiaoji linted-fuzzless vs. Xinxiangxiaoji lintless-fuzzless
12529/1215 0.161/0.250
徐州142和徐州142无绒无絮突变体
Xuzhou-142 vs. Xuzhou-142 lintless-fuzzless
14808/1488 0.190/0.306
7235和7235纤维突变体
7235 vs. 7235 mutant
19451/2546 0.250/0.524
TM-1和SL1-7-1突变体
TM-1 vs. SL1-7-1
20859/2188 0.268/0.450
TM-1和 MD-17突变体
TM-1 vs. MD-17
23814/2367 0.306/0.487
TM-1和显性光子N1突变体
TM-1 vs. N1 (dominant naked seed)
17678/2170 0.227/0.447
TM-1和隐性光子n2突变体
TM-1 vs. n2 (recessive naked seed)
19996/2446 0.257/0.503
TM-1和im突变体
TM-1 vs. im (immature fiber)
16333/3116 0.210/0.642

表4

芯片分型与SNP-PCR一致性分析"

SNP 染色体
Chr.
位置
Position (bp)
验证不一致数目
Number of mismatches
引物
Primer (5'-3')
TM3086 A01 86363489 1 F: CTTGATTTTCAATTCAACCAAAAAACTCCG
R: AAAATACATGGACGCAACTATCTGATGCATAATTT
TM4824 A02 45647806 0 F: TTGAATGAGTCTCATTTTATCAATTGACCTTTATTA
R: TCATAAGGTAATTTGGCAAGTAATTTTGAAAAAGTC
TM7830 A03 89740533 1 F: AAGCCTATATTTTGCCAACTTACCTTGTGCAG
R: ATTAAGTTAAAAAGTGCCACATGTCACAAAACCAT
TM9574 A04 51844539 0 F: GGCCCTAATCTTAGGCATAGTTTACCCCAAATAA
R: CTTAGGGTAGACGGATGGAGGGATGAGA
TM19508 A07 21138995 0 F: TGCGAGGGATTAAGTTTAGCTTGGAAAGC
R: CCATTAGTTGACAATCTTCAAGAACCTTACGAAAA
TM27528 A08 63064554 0 F: GCTCCCATAATTTTCTTTCACTTCGAGACG
R: AAGAGAAAGGTGAAAATTTTAAGTACAAAAGGTTGA
TM27748 A08 65768181 0 F: GGCTTTTACTGATTTACATTTTGAACAATGTTAAAG
R: GGCTGAATGCTCCTTTACCTTATTTATGGGTT
TM33913 A10 4141534 2 F: GCTCCCTTAAACCCGCAACCTTAGTCA
R: AGAAAGTTGTTTCGGCTGGTATTTTGAGGTT
TM53506 D03 2560865 0 F: ATATTTTCTTTTTCTTTTTTCGATAAGATAGAGCAA
R: CCAAGGTTAGTTAACTAGAAAAACTGACCGAATCAA
TM58088 D05 33818451 0 F: CTCGTATGTCACAAGACCATCAAAATTTAAATGAA
R: TGTATCCCCATTTTGAACACCCACATG
TM69807 D08 63425972 0 F: TTTGTCAATTCTTACCAATTATACCTTCCTACCAAG
R: TATGTTTTGAAAATGCAACACCTATAGAAAAAGCAA
TM72841 D09 47573336 0 F: CAGGAATCATTGGGGTTGGACAAGC
R: TATGCTTGACTAAGGGATGCATTATCATACATTGTT
TM75830 D11 13710651 0 F: CGCGTCGTAATCGAGTTTCACCGA
R: GGTGTCCGGTCCGGTGTGCTTA
TM80004 D13 163793 0 F: GTGGCCACTGAAGAGCAAGCTTAATGA
R: ATGCATGTTCAAGCTTCTTGGTAATGTCATAATC

图3

基于SNP-PCR技术验证SNP位点芯片分型结果 M: DNA marker; 1: TM-1; 2: 7235; 3: J02-508(7-50); 4: 岱字棉16; 5: 鄂棉21; 6: 鄂棉23; 7: 国欣棉9; 8: 邯郸885; 9: 黑山棉1号; 10: 冀122; 11: 军棉1号; 12: 山农棉8号; 13: 山西W1; 14: 山西W8; 15: 斯字棉2B; 16: 泗棉3号; 17: 皖棉17; 18: 新陆早32; 19: 新陆早7号; 20: 新陆中26; 21: 新陆中35; 22: 豫棉15; 23: 中棉所12; 24: 中棉所41。"

[1] Chen Z J, Scheffler B E, Dennis E, Triplett B A, Zhang T, Guo W, Chen X, Stelly D M, Rabinowicz P D, Town C D, Arioli T, Brubaker C, Cantrell R G, Lacape J M, Ulloa M, Chee P, Gingle A R, Haigler C H, Percy R, Saha S, Wilkins T, Wright R J, Van Deynze A, Zhu Y, Yu S, Abdurakhmonov I, Katageri I, Kumar P A, Mehboob Ur R, Zafar Y, Yu J Z, Kohel R J, Wendel J F, Paterson A H . Toward sequencing cotton (Gossypium ) genomes. Plant Physiol, 2007,145:1303-1310
[2] 喻树迅, 范术丽 . 我国棉花遗传育种进展与展望. 棉花学报, 2003,15:120-124
doi: 10.3969/j.issn.1002-7807.2003.02.011
Yu S X, Fan S L . The evolutions and prospect of cotton genetics and breeding in China. Cotton Sci, 2003,15:120-124 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-7807.2003.02.011
[3] Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B, Mei G, Sun J, Pan Z, He S, Xiao S, Shi W, Gong W, Liu J, Ma J, Cai C, Zhu X, Guo W, Du X, Zhang T . Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet, 2017,49:1089-1098
doi: 10.1038/ng.3887
[4] Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, Yuan D, Zhang Q, Lindsey K, Zhang X . Asymmetric subgenome selection and cis -regulatory divergence during cotton domestication.Nat Genet, 2017,49:579-587
[5] 郭旺珍, 张天真, 潘家驹, 何金龙 . 我国棉花主栽品种的RAPD指纹图谱研究. 农业生物技术学报, 1996,4:29-34
Guo W Z, Zhang T Z, Pan J J, He J L . Analysis of RAPD fingerprinting on main cotton cultivars in China. J Agric Biotechnol, 1996,4:29-34 (in Chinese with English abstract)
[6] Abdalla A M , Reddy O U K , El-Zik K M, Pepper A E. Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet, 2001,102:222-229
doi: 10.1007/s001220051639
[7] 武耀廷, 张天真, 郭旺珍, 殷剑美 . 陆地棉品种SSR标记的多态性及用于杂交种纯度检测的研究. 棉花学报, 2001,13:131-133
doi: 10.3969/j.issn.1002-7807.2001.03.001
Wu Y T, Zhang T Z, Guo W Z, Yin J M . Detecting polymorphism among upland cotton ( Gossypium hirsutum L.) cultivars and their roles in seed purity of hybrids with SSR markers. Cotton Sci, 2001,13:131-133 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-7807.2001.03.001
[8] 马轩, 杜雄明, 孙君灵 . 18个彩色棉品系的SSR指纹分析. 植物遗传资源学报, 2003,4:305-310
doi: 10.3969/j.issn.1672-1810.2003.04.005
Ma X, Du X M, Sun J L . SSR fingerprinting analysis on 18 colored cotton lines. J Plant Genet Resour, 2003,4:305-310 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-1810.2003.04.005
[9] 秦利, 李冰, 范玲, 李磊, 胡保民, 王沛政 . 新疆陆地棉SSR标记指纹图谱构建和杂种纯度鉴定研究. 新疆农业科学, 2005,42:399-401
Qin L, Li B, Fan L, Li L, Hu B M, Wang P Z . Analysis on esteblishment of finger printing of SSR mark for upland cotton and purity of hybrid seed in Xinjiang. Xinjiang Agric Sci, 2005,42:399-401 (in Chinese with English abstract)
[10] 赵亮, 蔡彩平, 梅鸿献, 郭旺珍 . 用于区别不同棉花品种基因组特征的微卫星位点筛选. 作物学报, 2012,38:1810-1817
doi: 10.3724/SP.J.1006.2012.01810
Zhao L, Cai C P, Mei H X, Guo W Z . Screening of microsatellite loci for identifying genome barcoding of cotton cultivars. Acta Agron Sin, 2012,38:1810-1817 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01810
[11] McNally K L, Bruskiewich R, Mackill D, Buell C R, Leach J E, Leung H . Sequencing multiple and diverse rice varieties. Connecting whole-genome variation with phenotypes. Plant Physiol, 2006,141:26-31
doi: 10.1104/pp.106.077313
[12] Ganal M W, Altmann T, Roder M S . SNP identification in crop plants. Curr Opin Plant Biol, 2009,12:211-217
doi: 10.1016/j.pbi.2008.12.009 pmid: 19186095
[13] 匡猛, 王延琴, 周大云, 马磊, 方丹, 徐双娇, 杨伟华, 魏守军, 马峙英 . 基于单拷贝SNP标记的棉花杂交种纯度高通量检测技术. 棉花学报, 2016,28:227-233
Kuang M, Wang Y Q, Zhou D Y, Ma L, Fang D, Xu S J, Yang W H, Wei S J, Ma Z Y . High-throughput genotyping assay technology for cotton hybrid purity based on single-copy SNP markers. Cotton Sci, 2016,28:227-233 (in Chinese with English abstract)
[14] 孙正文, 匡猛, 马峙英, 王省芬 . 利用CottonSNP63K芯片构建棉花品种的指纹图谱. 中国农业科学, 2017,50:4692-4704
doi: 10.3864/j.issn.0578-1752.2017.24.003
Sun Z W, Kuang M, Ma Z Y, Wang X F . Construction of cotton variety fingerprints using CottonSNP63K array. Sci Agric Sin, 2017,50:4692-4704 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.24.003
[15] Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M , Hulse-Kemp A M,Wan Q,Liu B,Liu C,Wang S,Pan M,Wang Y,Wang D,Ye W,Chang L,Zhang W,Song Q,Kirkbride R C,Chen X,Dennis E, Llewellyn D J,Peterson D G,Thaxton P,Jones D C,Wang Q,Xu X,Zhang H,Wu H,Zhou L,Mei G,Chen S,Tian Y,Xiang D,Li X,Ding J,Zuo Q,Tao L,Liu Y,Li J,Lin Y,Hui Y,Cao Z,Cai C,Zhu X,Jiang Z,Zhou B,Guo W,Li R,Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537
[16] Cai C, Zhu G, Zhang T, Guo W . High-density 80 K SNP array is a powerful tool for genotypingG. hirsutum accessions and genome analysis. BMC Genomics, 2017,18:654
[17] Paterson A H, Brubaker C L, Wendel J F . A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993,11:122-127
[18] 黄滋康 . 中国棉花品种及其系谱(修订本). 北京: 中国农业出版社, 2007
Huang Z K. Cotton Varieties and Their Genealogy in China (revised and enlarged edition). Beijing: China Agriculture Press, 2007 ( in Chinese)
[19] Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker K C, Shu S, Udall J, Yoo M J, Byers R, Chen W, Doron-Faigenboim A, Duke M V, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee T H, Li J, Lin L, Liu T, Marler B S, Page J T, Roberts A W, Romanel E, Sanders W S, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers J E, Brubaker C L, Chee P W, Das S, Gingle A R, Haigler C H, Harker D, Hoffmann L V, Hovav R, Jones D C, Lemke C , Mansoor S, ur Rahman M, Rainville L N, Rambani A, Reddy U K, Rong J K, Saranga Y, Scheffler B E, Scheffler J A, Stelly D M, Triplett B A, Van Deynze A, Vaslin M F, Waghmare V N, Walford S A, Wright R J, Zaki E A, Zhang T, Dennis E S, Mayer K F, Peterson D G, Rokhsar D-S, Wang X, Schmutz J. Repeated polyploidization ofGossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012,492:423-427
doi: 10.1038/nature11798 pmid: 23257886
[20] Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S . The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012,44:1098-1103
[21] Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S . Genome sequence of the cultivated cottonGossypium arboreum.Nat Genet, 2014,46:567-572
[22] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X . Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530
[23] Liu X, Zhao B, Zheng H J, Hu Y, Lu G, Yang C Q, Chen J D, Chen J J, Chen D Y, Zhang L, Zhou Y, Wang L J, Guo W Z, Bai Y L, Ruan J X, Shangguan X X, Mao Y B, Shan C M, Jiang J P, Zhu Y Q, Jin L, Kang H, Chen S T, He X L, Wang R, Wang Y Z, Chen J, Wang L J, Yu S T, Wang B Y, Wei J, Song S C, Lu X Y, Gao Z C, Gu W Y, Deng X, Ma D, Wang S, Liang W H, Fang L, Cai C P, Zhu X F, Zhou B L, Chen Z J, Xu S H, Zhang Y G, Wang S Y, Zhang T Z, Zhao G P, Chen X Y . Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep, 2015,5:14139
[24] Yuan D J, Tang Z H, Wang M J, Gao W H, Tu L L, Jin X, Chen L L, He Y H, Zhang L, Zhu L F, Li Y, Liang Q Q, Lin Z X, Yang X Y, Liu N A, Jin S X, Lei Y, Ding Y H, Li G L, Ruan X A, Ruan Y J, Zhang X L . The genome sequence of Sea-Island cotton (Gossypium barbadense ) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep, 2015,5:17662
[25] Ma Z Y, He S P, Wang X F, Sun J L, Zhang Y, Zhang G Y, Wu L Q, Li Z K, Liu Z H, Sun G F, Yan Y Y, Jia Y H, Yang J, Pan Z E, Gu Q S, Li X Y, Sun Z W, Dai P H, Liu Z W, Gong W F, Wu J H, Wang M, Liu H W, Feng K Y, Ke H F, Wang J D, Lan H Y, Wang G N, Peng J, Wang N, Wang L R, Pang B Y, Peng Z, Li R Q, Tian S L, Du X M . Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet, 2018,50:803-813
doi: 10.1038/s41588-018-0119-7
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[4] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[5] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[6] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[7] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[8] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[9] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[10] 王蕊, 施龙建, 田红丽, 易红梅, 杨扬, 葛建镕, 范亚明, 任洁, 王璐, 陆大雷, 赵久然, 王凤格. 玉米杂交种纯度鉴定SNP核心引物的确定及高通量检测方案的建立[J]. 作物学报, 2021, 47(4): 770-779.
[11] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[12] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[13] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析[J]. 作物学报, 2021, 47(10): 1891-1902.
[14] 刘畅, 孟云, 刘金栋, 王雅美, Guoyou Ye. 结合QTL-seq和连锁分析发掘水稻中胚轴伸长相关QTL[J]. 作物学报, 2021, 47(10): 2036-2044.
[15] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!